【題目】橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)設(shè)為橢圓上任一點(diǎn), 為其右焦點(diǎn),點(diǎn)滿足.

①證明: 為定值;

②設(shè)直線與橢圓有兩個(gè)不同的交點(diǎn),與軸交于點(diǎn).若成等差數(shù)列,求的值.

【答案】(1) ;(2)①.證明見(jiàn)解析;②. .

【解析】試題分析:(1)將點(diǎn)坐標(biāo)代人橢圓方程,與離心率聯(lián)立方程組解得a.b,(2)①根據(jù)兩點(diǎn)間距離公式,代入橢圓方程化簡(jiǎn)可得,再求比值即可,②先根據(jù)成等差數(shù)列,得,再根據(jù)橢圓定義化簡(jiǎn),聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理代入化簡(jiǎn)可得的值.

試題解析:(1)由,

把點(diǎn)代入橢圓方程為,∴,

,橢圓的標(biāo)準(zhǔn)方程為;

(2)由(1)知,

,∴為定值;

②直線與橢圓聯(lián)立, ,

,

設(shè),則,

由①知,

,

成等差數(shù)列,

,即解得,

又因?yàn)?/span>,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T,其范圍為[0,10],分為五個(gè)級(jí)別,T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r(shí)段(T≥3),從某市交通指揮中心隨機(jī)選取了三環(huán)以內(nèi)的50個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如右圖. (Ⅰ)這50個(gè)路段為中度擁堵的有多少個(gè)?
(Ⅱ)據(jù)此估計(jì),早高峰三環(huán)以內(nèi)的三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/span>
(III)某人上班路上所用時(shí)間若暢通時(shí)為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘;中度擁堵為42分鐘;嚴(yán)重?fù)矶聻?0分鐘,求此人所用時(shí)間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求處的切線方程;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對(duì)稱軸方程是 ,函數(shù)f'(x)的圖象的一個(gè)對(duì)稱中心是 ,則f(x)的最小正周期是(
A.
B.
C.π
D.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個(gè)零點(diǎn),求a的取值范圍;
(2)若對(duì)任意x>0,恒有不等式f(x)≥1成立. ①求實(shí)數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分12分)全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國(guó)網(wǎng)民中影響了的綜合指標(biāo).根據(jù)相關(guān)報(bào)道提供的全網(wǎng)傳播2015年某全國(guó)性大型活動(dòng)的省級(jí)衛(wèi)視新聞臺(tái)融合指數(shù)的數(shù)據(jù),對(duì)名列前20名的省級(jí)衛(wèi)視新聞臺(tái)的融合指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示.

組號(hào)

分組

頻數(shù)

1


2

2


8

3


7

4


3

)現(xiàn)從融合指數(shù)在內(nèi)的省級(jí)衛(wèi)視新聞臺(tái)中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在的概率;

)根據(jù)分組統(tǒng)計(jì)表求這20省級(jí)衛(wèi)視新聞臺(tái)的融合指數(shù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在,很多人都喜歡騎“共享單車”,但也有很多市民并不認(rèn)可.為了調(diào)查人們對(duì)這種交通方式的認(rèn)可度,某同學(xué)從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20名市民,得到了一個(gè)市民是否認(rèn)可的樣本,具體數(shù)據(jù)如下列聯(lián)表

附:,

根據(jù)表中的數(shù)據(jù),下列說(shuō)法中,正確的是(

A. 沒(méi)有95% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

B. 有99% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

C. 可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

D. 可以在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年郴州市兩會(huì)召開(kāi)前夕,某網(wǎng)站推出兩會(huì)熱點(diǎn)大型調(diào)查,調(diào)查數(shù)據(jù)表明,民生問(wèn)題時(shí)百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問(wèn)題的約占80%,現(xiàn)從參與者中隨機(jī)選出200人,并將這200人按年齡分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65),得到的頻率分布直方圖如圖所示.
(1)求出頻率分布直方圖中的a值,并求出這200的平均年齡;
(2)現(xiàn)在要從年齡較小的第1,2,3組用分層抽樣的方法抽取12人,再?gòu)倪@12人中隨機(jī)抽取3人贈(zèng)送禮品,求抽取的3人中至少有1人的年齡在第3組的概率;
(3)若要從所有參與調(diào)查的人(人數(shù)很多)中隨機(jī)選出3人,記關(guān)注民生問(wèn)題的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹(shù)上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)求質(zhì)量落在兩組內(nèi)的蜜柚的抽取個(gè)數(shù),

(2)從質(zhì)量落在, 內(nèi)的蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

查看答案和解析>>

同步練習(xí)冊(cè)答案