若x,y均為正實(shí)數(shù),且x+2y+2xy=8,求x+2y的最小值.
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:由x+2y+2xy=8,可得2y=
8-x
1+x
>0(0<x<8).可得x+2y=x+
8-x
1+x
=
9
1+x
+x+1-2
,利用基本不等式的性質(zhì)即可得出.
解答: 解:由x+2y+2xy=8,可得2y=
8-x
1+x
>0(0<x<8).
∴x+2y=x+
8-x
1+x
=
9
1+x
+x+1-2
≥2
(x+1)•
9
1+x
-2=4,當(dāng)且僅當(dāng)x=2時取等號.
∴x+2y的最小值是4.
點(diǎn)評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)某旅游景點(diǎn)每天的固定成本為500元,門票每張為30元,變動成本與購票進(jìn)入旅游景點(diǎn)的人數(shù)的算術(shù)平方根成正比.一天購票人數(shù)為25時,該旅游景點(diǎn)收支平衡;一天購票人數(shù)超過100時,該旅游景點(diǎn)須另交保險費(fèi)200元.設(shè)每天的購票人數(shù)為x,盈利額為y.
(Ⅰ)求y與x之間的函數(shù)關(guān)系;
(Ⅱ)試用程序框圖描述算法(要求:輸入購票人數(shù),輸出盈利額);
(Ⅲ)該旅游景點(diǎn)希望在人數(shù)達(dá)到20人時即不出現(xiàn)虧損,若用提高門票價格的措施,則每張門票至少要多少元(取整數(shù))?注:可選用數(shù)據(jù):
2
=1.41,
3
=1.73,
5
=2.24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

工人看管三臺機(jī)床,在某一小時內(nèi),三臺機(jī)床正常工作的概率分別為0.9,0.8,0.85,且各臺機(jī)床是否正常工作相互之間沒有影響,求這個小時內(nèi):
(1)三臺機(jī)床都能正常工作的概率;
(2)三臺機(jī)床中至少有一臺能正常工作的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
a
x
(a∈R),求證:在[
|a|
,+∞)上方程f(x)=2013至多有一個根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2sin2x-cos2x+sinxcosx-6sinx+3cosx=0,求
2cosx(sinx+cosx)
1+tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(x+1)+
1
2
x2-ax+1(a>0).
(1)求函數(shù)y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)當(dāng)a>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3

(Ⅰ)若原點(diǎn)到直線x+y-b=0的距離為
2
,求橢圓的方程;
(Ⅱ)設(shè)過橢圓的右焦點(diǎn)且傾斜角為45°的直線和橢圓交于A,B兩點(diǎn).當(dāng)|AB|=
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)上任意一點(diǎn)A(x0,y0)任意做兩條傾斜角互補(bǔ)的直線交橢圓于B、C兩點(diǎn),求直線BC的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為-4時,則輸入的S0的值為
 

查看答案和解析>>

同步練習(xí)冊答案