精英家教網 > 高中數學 > 題目詳情
對于函數y=f(x),以下說法不正確的是( )
A.y是x的函數
B.對于不同的x,y的值可以不同
C.f(a)表示當x=a時函數f(x)的值
D.f(x)一定可用一個具體的式子表示出來
【答案】分析:由函數的定義和常函數知A正確、B正確;根據函數值的定義知它是一個確定的值,判斷出C正確;根據函數的表示方法知D不正確.
解答:解:A、由函數的定義知,y是x的函數,故A正確;
B、如常函數y=f(x)=x,故B正確;
C、由函數值的定義知,f(a)表示當x=a時函數f(x)的值,是一個確定的值,故C正確;
D、函數的表示方法有解析法、表格法和圖象法,對于表格法和圖象法有的無法用一個具體的式子表示出來,故D不正確.
故選D.
點評:此題是個基礎題.本題的考點是函數的概念以及要素,考查了對概念的理解程度和運用能力,注意特殊函數的運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知y=f(x)是定義在R上的奇函數,且y=f(x+
π
2
)
為偶函數,對于函數y=f(x)有下列幾種描述:
①y=f(x)是周期函數②x=π是它的一條對稱軸;③(-π,0)是它圖象的一個對稱中心;
④當x=
π
2
時,它一定取最大值;其中描述正確的是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列五個命題:
①函數y=f(x),x∈R的圖象與直線x=a可能有兩個不同的交點;
②函數y=log2x2與函數y=2log2x是相等函數;
③對于指數函數y=2x與冪函數y=x2,總存在x0,當x>x0 時,有2x>x2成立;
④對于函數y=f(x),x∈[a,b],若有f(a)•f(b)<0,則f(x)在(a,b)內有零點.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,則x1+x2=5.
其中正確的序號是
③⑤
③⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•和平區(qū)一模)函數y=f(x)是定義在[a,b]上的增函數,其中a,b∈R,且0<b<-a,已知y=f(x)無零點,設F(x)=f2(x)+f2(-x),則對于函數y=F(x)有如下四種說法:①定義域是[-b,b];②最小值是0;③是偶函數;④在定義域內單調遞增.其中正確的說法是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•上海模擬)對于函數y=f(x)的圖象上任意兩點A(a,f(a)),B(b,f(b)),設點C分
AB
的比為λ(λ>0).若函數為f(x)=x2(x>0),則直線AB必在曲線AB的上方,且由圖象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函數為f(x)=log2010x,請分析該函數的圖象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在區(qū)間[-3,3]上的函數y=f(x)滿足f(-x)+f(x)=0,對于函數y=f(x)的圖象上任意兩點(x1,f(x1)),(x2,f(x2))都有(x1-x2)•[f(x1)-f(x2)]<0.若實數a,b滿足f(a2-2a)+f(2b-b2)≤0,則點(a,b)所在區(qū)域的面積為( 。
A、8B、4C、2D、1

查看答案和解析>>

同步練習冊答案