【題目】已知:函數(shù)

求函數(shù)的周期T與單調(diào)增區(qū)間.

函數(shù)的圖象有幾個(gè)公共交點(diǎn).

設(shè)關(guān)于x的函數(shù)的最小值為,試確定滿足a的值.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析.

【解析】試題分析:第一問(wèn)化簡(jiǎn)可得結(jié)合圖像可得函數(shù)的周期和單調(diào)區(qū)間;第二問(wèn)作函數(shù)的圖像,數(shù)形結(jié)合可得;第三問(wèn)變形可得,可得,換元可得由二次函數(shù)在某個(gè)閉區(qū)間的最值,分情況討論即可得結(jié)果.

函數(shù)的周期

函數(shù)的增區(qū)間: ;

作函數(shù)的圖象,從圖象可以看出函數(shù)的圖象有三個(gè)交點(diǎn);

,可得

換元可得,可看作關(guān)于t的二次函數(shù),

圖象為開(kāi)口向上的拋物線,對(duì)稱軸為,

當(dāng),即時(shí),是函數(shù)y的遞增區(qū)間,

當(dāng),即時(shí),是函數(shù)y的遞減區(qū)間,,得,與矛盾;

當(dāng),即時(shí),,變形可得

解得舍去

綜上可得滿足a的值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ABC90°,ABBC1,PABC內(nèi)一點(diǎn),∠BPC90°.

(1)PB,求PA;

(2)若∠APB150°,求tanPBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(Ⅰ)已知函數(shù)f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集為{x|x≤﹣2或x≥3},求a的值;
(Ⅱ) 已知實(shí)數(shù)a,b,c∈R+ , 且a+b+c=m,求證: + +

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域?yàn)?/span>,解不等式.

【答案】(1)奇函數(shù)(2)增函數(shù)(3)

【解析】試題分析:1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡(jiǎn),判斷,下結(jié)論五個(gè)步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。

試題解析:1)函數(shù)為奇函數(shù).證明如下:

定義域?yàn)?/span>

為奇函數(shù)

2)函數(shù)在(-11)為單調(diào)函數(shù).證明如下:

任取,則

,

在(-1,1)上為增函數(shù)

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點(diǎn)睛

(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。

(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡(jiǎn),定號(hào),下結(jié)論五個(gè)步驟。

型】解答
結(jié)束】
22

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實(shí)數(shù)的值;

(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;

(3)若,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量平行.

1)求A;

2)若,b2,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a1 , a2 , …,an∈R,n≥3.若p:a1 , a2 , …,an成等比數(shù)列;q:(a +a +…+a )(a +a +…+a )=(a1a2+a2a3+…+an1an2 , 則p是q的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題: ①x0∈R,ln(x02+1)<0;
x>2,x2>2x;
α,β∈R,sin(α﹣β)=sin α﹣sin β;
④若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件.
其中真命題的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】英格蘭足球超級(jí)聯(lián)賽,簡(jiǎn)稱英超,是英國(guó)足球最高等級(jí)的職業(yè)足球聯(lián)賽,也是世界最高水平的職業(yè)足球聯(lián)賽之一,目前英超參賽球隊(duì)有20個(gè),在2014-2015賽季結(jié)束后將各隊(duì)積分分成6段,并繪制出了如圖所示的頻率分布直方圖(圖中各分組區(qū)間包括左端點(diǎn),不包括右端點(diǎn),如第一組表示積分在[30,40)內(nèi)).根據(jù)圖中現(xiàn)有信息,解答下面問(wèn)題:

(Ⅰ)求積分在[40,50)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(Ⅱ)從積分在[40,60)中的球隊(duì)中任選取2個(gè)球隊(duì),求選取的2個(gè)球隊(duì)的積分在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案