【題目】英格蘭足球超級(jí)聯(lián)賽,簡(jiǎn)稱(chēng)英超,是英國(guó)足球最高等級(jí)的職業(yè)足球聯(lián)賽,也是世界最高水平的職業(yè)足球聯(lián)賽之一,目前英超參賽球隊(duì)有20個(gè),在2014-2015賽季結(jié)束后將各隊(duì)積分分成6段,并繪制出了如圖所示的頻率分布直方圖(圖中各分組區(qū)間包括左端點(diǎn),不包括右端點(diǎn),如第一組表示積分在[30,40)內(nèi)).根據(jù)圖中現(xiàn)有信息,解答下面問(wèn)題:
(Ⅰ)求積分在[40,50)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)從積分在[40,60)中的球隊(duì)中任選取2個(gè)球隊(duì),求選取的2個(gè)球隊(duì)的積分在頻率分布直方圖中處于不同組的概率.
【答案】(1)見(jiàn)解析;(2) P=.
【解析】試題分析:(1)根據(jù)概率和為1得到概率值;(2)古典概型,計(jì)算出事件總數(shù)為21件,滿足條件的事件數(shù)位7件,進(jìn)而得到概率值.
解析:
(I)積分在[40,50)內(nèi)的頻率為
1-(0.030+0.010+0.015+0.015+0.005)×10=0.25, =0.025,
故補(bǔ)全的圖形如圖所示
(Ⅱ)積分在[40,50)內(nèi)的球隊(duì)有20×0.025×10=5個(gè),分別記為A,B,C,D,E,積分在[50,60)內(nèi)的球隊(duì)有20x0.010×10=2個(gè),分別記為m,n,
所以,在7個(gè)球隊(duì)中選取2個(gè),基本事件有(A,B),(A,C),(A,D),(A,E),(A,m),(A,n),(B,C),(B,D),(B,E),(B,m),(B,n),(C,D),(C,E),(C,m),(C,n),(D,E),(D,m),(D,n),(E,m),(E,n),(m,n)共21個(gè),
其中符合選取的兩個(gè)球隊(duì)的積分在頻率分布直方圖中處于不同組的基本事件有10個(gè),故選取的兩個(gè)球隊(duì)積分在頻率分布直方圖中處于不同組的概率為P=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:函數(shù)
求函數(shù)的周期T與單調(diào)增區(qū)間.
函數(shù)與的圖象有幾個(gè)公共交點(diǎn).
設(shè)關(guān)于x的函數(shù)的最小值為,試確定滿足的a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王、小張兩位同學(xué)玩投擲正四面體(每個(gè)面都為等邊三角形的正三棱錐)骰子(骰子質(zhì)地均勻,各面上的點(diǎn)數(shù)分別為)游戲,規(guī)則:小王現(xiàn)擲一枚骰子,向下的點(diǎn)數(shù)記為,小張后擲一枚骰子,向下的點(diǎn)數(shù)記為,
(1)在直角坐標(biāo)系中,以為坐標(biāo)的點(diǎn)共有幾個(gè)?試求點(diǎn)落在直線上的概率;
(2)規(guī)定:若,則小王贏,若,則小張贏,其他情況不分輸贏,試問(wèn)這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B,C為直角坐標(biāo)系xOy中的三個(gè)定點(diǎn)
(Ⅰ)若點(diǎn)D為□ABCD的第四個(gè)頂點(diǎn),求||;
(Ⅱ)若點(diǎn)P在直線OC上,且·=4,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數(shù)y=f(x)g(x)的奇偶性;
(2)當(dāng)b=0時(shí),判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說(shuō)明理由;
(3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)y=f(t)是某港口水的深度y(米)關(guān)于時(shí)間t(小時(shí))的函數(shù),其中.下表是該港口某一天從0時(shí)至24時(shí)記錄的時(shí)間t與水深y的關(guān)系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 12 | 14.9 | 11.9 | 9 | 12.1 |
經(jīng)長(zhǎng)期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)的圖象.⑴求的解析式;⑵設(shè)水深不小于米時(shí),輪船才能進(jìn)出港口。某輪船在一晝夜內(nèi)要進(jìn)港口靠岸辦事,然后再出港。問(wèn)該輪船最多能在港口?慷嚅L(zhǎng)時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了了解該校學(xué)生對(duì)于某項(xiàng)運(yùn)動(dòng)的愛(ài)好是否與性別有關(guān),通過(guò)隨機(jī)抽查110名學(xué)生,得到如下2×2的列聯(lián)表:
喜歡該項(xiàng)運(yùn)動(dòng) | 不喜歡該項(xiàng)運(yùn)動(dòng) | 總計(jì) | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由公式K2= ,算得K2≈7.61
附表:
p(K2≥k0) | 0.025 | 0.01 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
參照附表,以下結(jié)論正確是( )
A.有99.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an , 求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點(diǎn),D為棱CC1上任一點(diǎn).
(Ⅰ)求證:直線EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com