【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路段汽車的車流量y(千輛/小時)與汽車的平均速度υ(千米/小時)之間的函數(shù)關(guān)系為:y= (υ>0).
(1)在該時段內(nèi),當(dāng)汽車的平均速度υ為多少時,車流量最大?最大車流量為多少?(保留分?jǐn)?shù)形式)
(2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應(yīng)在什么范圍內(nèi)?

【答案】
(1)解:依題意,y= =

當(dāng)且僅當(dāng)v= ,即v=40時,上式等號成立,

∴ymax= (千輛/時).

∴如果要求在該時段內(nèi)車流量超過10千輛/時,則汽車的平均速度應(yīng)大于25km/h且小于64km/h.當(dāng)v=40km/h時,車流量最大,最大車流量約為 千輛/時;


(2)解:由條件得 >10,

整理得v2﹣89v+1600<0,

即(v﹣25)(v﹣64)<0.解得25<v<64.


【解析】(1)根據(jù)基本不等式性質(zhì)可知y= = ,進而求得y的最大值.根據(jù)等號成立的條件求得此時的平均速度.(2)在該時間段內(nèi)車流量超過10千輛/小時時,解不等式即可求出v的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了估計某校的一次數(shù)學(xué)考試情況,現(xiàn)從該校參加考試的600名學(xué)生中隨機抽出60名學(xué)生,其成績(百分制)均在[40,100)上,將這些成績分成六段[40,50),[50,60)…[90,100),后得到如圖所示部分頻率分布直方圖.

(1)求抽出的60名學(xué)生中分?jǐn)?shù)在[70,80)內(nèi)的人數(shù);
(2)若規(guī)定成績不小于85分為優(yōu)秀,則根據(jù)頻率分布直方圖,估計該校優(yōu)秀人數(shù).
(3)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:對任意的x1 , x2∈R(x1≠x2),有 <0,則(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017福建三明5月質(zhì)檢】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列是全稱命題并且是真命題的是(
A.?x∈R,x2>0
B.?x,y∈R,x2+y2>0
C.?x∈Q,x2∈Q
D.?x0∈Z,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017江西上饒聯(lián)考】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為

1及基地的預(yù)期收益;

2若該基地額外聘請工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無雨時收益為萬元,有雨時收益為萬元,且額外聘請工人的成本為元,問該基地是否應(yīng)該額外聘請工人,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式
(1)x2﹣3x﹣4<0
(2)x2﹣x﹣6>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家.某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸).將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)估計居民月均水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點;命題q:曲線=1表示焦點在y軸上的雙曲線,若p∧q為真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案