【題目】命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點;命題q:曲線﹣=1表示焦點在y軸上的雙曲線,若p∧q為真命題,求實數(shù)k的取值范圍.
【答案】解:∵命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點,
∴圓心到直線的距離d=,∴k2或k-2,
∵命題q:曲線﹣=1表示焦在y軸上的雙曲線,
∴,解得k<0,
∵p∧q為真命題,∴p,q均為真命題,
∴ ,
解得k<﹣2.
【解析】命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點,可得圓心到直線的距離d= , 解得k范圍.命題q:曲線﹣=1表示焦在y軸上的雙曲線,可得 , 解得k范圍.由于p∧q為真命題,可得p,q均為真命題,即可得出.
【考點精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路段汽車的車流量y(千輛/小時)與汽車的平均速度υ(千米/小時)之間的函數(shù)關(guān)系為:y= (υ>0).
(1)在該時段內(nèi),當(dāng)汽車的平均速度υ為多少時,車流量最大?最大車流量為多少?(保留分?jǐn)?shù)形式)
(2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的首項為1,公比為q,它的前n項和為Sn;
(1)若S3=3,S6=﹣21,求公比q;
(2)若q>0,且Tn=a1+a3+…+a2n﹣1 , 求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項a8;
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項和S5 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx+2上至少存在一點,使得以該點為圓心,半徑為1的圓與圓C有公共點,則k的最小值是( 。
A.-
B.-
C.-
D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017南通一模19】已知函數(shù)。
(1)當(dāng)時,求函數(shù)的最小值;
(2)若,證明:函數(shù)有且只有一個零點;
(3)若函數(shù)又兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【南通市、泰州市2017屆高三第一次調(diào)研測試】(本題滿分14分)如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,焦點到相應(yīng)準(zhǔn)線的距離為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為橢圓上的一點,過點O作OP的垂線交直線
于點Q,求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點E是棱AB上的動點.
(1)求證:DA1⊥ED1;
(2)若直線DA1與平面CED1成角為45°,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com