【題目】【南通市、泰州市2017屆高三第一次調(diào)研測試】(本題滿分14分)如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,焦點到相應(yīng)準(zhǔn)線的距離為1.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若P為橢圓上的一點,過點O作OP的垂線交直線

于點Q,求的值;

【答案】見解析

【解析】解:(1)由題意得:,………………2分

解得:,所以橢圓的標(biāo)準(zhǔn)方程為……4分

(2)由題意知OP的斜率存在,

當(dāng)OP的斜率為0時,,所以=1,……6分

當(dāng)OP的斜率不為0時,設(shè)直線OP的方程為

得:,解得:,所以,

所以,…………………………………………………………9分

因為,所以直線OQ的方程為

得:,所以,……………………12分

所以=

綜上,可知=1.………………………………………………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式
(1)x2﹣3x﹣4<0
(2)x2﹣x﹣6>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點,離心率 ,且其中一個焦點與拋物線 的焦點重合.
(1)求橢圓C的方程;
(2)過點S( ,0)的動直線l交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點;命題q:曲線=1表示焦點在y軸上的雙曲線,若p∧q為真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c(其中b,c為實常數(shù)).
(1)若b>2,且y=f(sinx)(x∈R)的最大值為5,最小值為﹣1,求函數(shù)y=f(x)的解析式;
(2)是否存在這樣的函數(shù)y=f(x),使得{y|y=x2+bx+c,﹣1≤x≤0}=[﹣1,0],若存在,求出函數(shù)y=f(x)的解析式;若不存在,請說明理由.
(3)記集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
①若A≠,求證:B≠
②若A=,判斷B是否也為空集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【蘇北三市(連云港、徐州、宿遷)2017屆高三年級第三次調(diào)研考試】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計如圖所示.圓的圓心與矩形對角線的交點重合,且圓與矩形上下兩邊相切(為上切點),與左右兩邊相交(,為其中兩個交點),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1,且,設(shè),透光區(qū)域的面積為.

(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;

(2)根據(jù)設(shè)計要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時,求邊的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;在80mg/100mL(含80)以上時,屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了300輛機動車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測結(jié)果如表:

酒精含量(mg/100mL)

[20,30)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

人數(shù)

3

4

1

4

2

3

2

1


(1)繪制出檢測數(shù)據(jù)的頻率分布直方圖(計算并標(biāo)上選取的y軸單位長度,在圖中用實線畫出矩形框并用陰影表示),估計檢測數(shù)據(jù)中酒精含量的眾數(shù)
(2)求檢測數(shù)據(jù)中醉酒駕駛的頻率,并估計檢測數(shù)據(jù)中酒精含量的中位數(shù)、平均數(shù)(請寫出計算過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點A(1,3)、B(2,2),并且直線m:3x﹣2y=0平分圓C.
(1)求圓C的方程;
(2)若過點D(0,1),且斜率為k的直線l與圓C有兩個不同的交點M、N.
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)若 =12,求k的值.

查看答案和解析>>

同步練習(xí)冊答案