【題目】已知二次函數(shù)f(x)=x2+bx+c(其中b,c為實常數(shù)).
(1)若b>2,且y=f(sinx)(x∈R)的最大值為5,最小值為﹣1,求函數(shù)y=f(x)的解析式;
(2)是否存在這樣的函數(shù)y=f(x),使得{y|y=x2+bx+c,﹣1≤x≤0}=[﹣1,0],若存在,求出函數(shù)y=f(x)的解析式;若不存在,請說明理由.
(3)記集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
①若A≠,求證:B≠;
②若A=,判斷B是否也為空集.
【答案】
(1)解:由條件知f(x)=x2+bx+c的最大值為5,最小值為﹣1
而b>2,則對稱軸 ,
則 ,即 ,
解得
則f(x)=x2+3x+1.
(2)解:f(x)=x2+bx+c,﹣1≤x≤0,對稱軸x=﹣ ,
若b≥2,則 ,則 ,
解得 ,此時f(x)=x2+2x,
若b≤0,則 ,則 ,
解得 ,此時f(x)=x2﹣1,
若0<b≤1,則 ,則 ,
解得 (舍)或 (舍),
此時不存在函數(shù)f(x),若1<b<2,則 ,
則 ,解得 (舍)或 (舍),此時不存在函數(shù)f(x),
綜上所述存在函數(shù)f(x)=x2﹣1和f(x)=x2+2x滿足條件
(3)解:由f(x)=x2+bx+c得f(f(x))=f2(x)+bf(x)+c及c=f(x)﹣x2﹣bx,
由f(f(x))=x得到f2(x)+bf(x)+c=x,即f2(x)+bf(x)+f(x)﹣x2﹣bx=x,
整理得到f2(x)﹣x2+b(f(x)﹣x)+(f(x)﹣x)=0,
即(f(x)﹣x)(f(x)+x+b+1)=0①
即f(x)﹣x=0或f(x)+x+b+1=0,
即x2+(b﹣1)x+c=0②或x2+(b+1)x+b+c+1=0③
方程②的判別式△=(b﹣1)2﹣4c
方程③的判別式 ,
①若A≠,即f(x)﹣x=0有解,即x2+(b﹣1)x+c=0有解,即△≥0,則①有解,
即B≠,
②若A=,即△<0,則△1<0,②和③均無解,則①無解,即B=.
【解析】(1)求出函數(shù)的對稱軸小于﹣1,得到關于b,c的方程組,解出即可;(2)求出f(x)的對稱軸,通過討論對稱軸的位置,結(jié)合函數(shù)的值域求出b,c的值,從而求出f(x)的表達式即可;(3)通過整理方程得到x2+(b﹣1)x+c=0或x2+(b+1)x+b+c+1=0,結(jié)合二次函數(shù)的性質(zhì)進行證明即可.
【考點精析】利用二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學 來源: 題型:
【題目】【2017四川資陽4月模擬】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ)求圖中的值;
(Ⅱ)已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設其中的女生人數(shù)為隨機變量X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項a8;
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項和S5 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017南通一模19】已知函數(shù)。
(1)當時,求函數(shù)的最小值;
(2)若,證明:函數(shù)有且只有一個零點;
(3)若函數(shù)又兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【南通市、泰州市2017屆高三第一次調(diào)研測試】(本題滿分14分)如圖,在平面直角坐標系中,已知橢圓的離心率為,焦點到相應準線的距離為1.
(1)求橢圓的標準方程;
(2)若P為橢圓上的一點,過點O作OP的垂線交直線
于點Q,求的值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學平均分分別是a、b,則這兩個級部的數(shù)學平均分為 + ;
③某中學采用系統(tǒng)抽樣方法,從該校高一年級全體800名學生中抽50名學生做牙齒健康檢查,現(xiàn)將800名學生從001到800進行編號,已知從497﹣﹣512這16個數(shù)中取得的學生編號是503,則初始在第1小組00l~016中隨機抽到的學生編號是007.
其中命題正確的個數(shù)是( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點E是棱AB上的動點.
(1)求證:DA1⊥ED1;
(2)若直線DA1與平面CED1成角為45°,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x2﹣1|+x2+kx.
(1)若對于區(qū)間(0,+∞)內(nèi)的任意x,總有f(x)≥0成立,求實數(shù)k的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)有兩個不同的零點x1 , x2 , 求:
①實數(shù)k的取值范圍;
② 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是公比不為1的等比數(shù)列,a1=1,且a1 , a3 , a2成等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)若數(shù)列{an}的前n項和為Sn , 試求Sn的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com