【題目】已知等比數(shù)列{an}的首項(xiàng)為1,公比為q,它的前n項(xiàng)和為Sn;
(1)若S3=3,S6=﹣21,求公比q;
(2)若q>0,且Tn=a1+a3+…+a2n1 , 求

【答案】
(1)解:S3=3,S6=﹣21,

可得q≠1,則 =3, =﹣21,

兩式相除可得1+q3=﹣7,

解得q=﹣2;


(2)解:Sn= ,

Tn=a1+a3+…+a2n1=

當(dāng)q>1時(shí), = =0;

當(dāng)0<q<1時(shí), = =1+q;

當(dāng)q=1時(shí), = =1


【解析】(1)判斷公比不為1,運(yùn)用等比數(shù)列的求和公式,解方程可得公比q;(2)分別運(yùn)用等比數(shù)列的求和公式,求得Sn , Tn , 再對(duì)公比q討論:0<q<1,q=1,q>1,由極限公式,即可得到所求值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:對(duì)任意的x1 , x2∈R(x1≠x2),有 <0,則(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式
(1)x2﹣3x﹣4<0
(2)x2﹣x﹣6>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家.某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸).將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)估計(jì)居民月均水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017北京西城區(qū)5月模擬】已知函數(shù),其中.

求函數(shù)的零點(diǎn)個(gè)數(shù);

證明:是函數(shù)存在最小值的充分而不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)環(huán)保意識(shí),我校從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

40

20

60

女生

20

30

50

總計(jì)

60

50

110


(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān);
(2)為參加市里舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,已知在環(huán)保測(cè)試中優(yōu)秀的同學(xué)通過預(yù)選賽的概率為 ,現(xiàn)在環(huán)保測(cè)試中優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,若隨機(jī)變量X表示這3人中通過預(yù)選賽的人數(shù),求X的分布列與數(shù)學(xué)期望.
附:K2=

P(K2≥k)

0.500

0.400

0.100

0.010

0.001

k

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),離心率 ,且其中一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)過點(diǎn)S( ,0)的動(dòng)直線l交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無論l如何轉(zhuǎn)動(dòng),以AB為直徑的圓恒過點(diǎn)T,若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點(diǎn);命題q:曲線=1表示焦點(diǎn)在y軸上的雙曲線,若p∧q為真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;在80mg/100mL(含80)以上時(shí),屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動(dòng)中,依法檢查了300輛機(jī)動(dòng)車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測(cè)結(jié)果如表:

酒精含量(mg/100mL)

[20,30)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

人數(shù)

3

4

1

4

2

3

2

1


(1)繪制出檢測(cè)數(shù)據(jù)的頻率分布直方圖(計(jì)算并標(biāo)上選取的y軸單位長(zhǎng)度,在圖中用實(shí)線畫出矩形框并用陰影表示),估計(jì)檢測(cè)數(shù)據(jù)中酒精含量的眾數(shù)
(2)求檢測(cè)數(shù)據(jù)中醉酒駕駛的頻率,并估計(jì)檢測(cè)數(shù)據(jù)中酒精含量的中位數(shù)、平均數(shù)(請(qǐng)寫出計(jì)算過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案