已知點在橢圓上,則的最大值為(    )
A.B.-1C.2D.7
D

試題分析:因為點在橢圓上,那么可知,所以,因為橢圓中-2x2,那么結(jié)合二次函數(shù)的性質(zhì)可知函數(shù)的對稱軸為x=-1,定義域為-2x2,開口向上,那么可知當x=2時,函數(shù)值最大且為7.選D.
點評:解決該試題的關(guān)鍵是可以運用橢圓的參數(shù)方程,運用三角函數(shù)式得到最值,也可以運用直角坐標結(jié)合橢圓 性質(zhì)得到。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個端點到右焦點的距離為,直線交橢圓于不同的兩點。
(1)求橢圓的方程;
(2)若坐標原點到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)(理科)已知橢圓,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,交直線于點,且,,
求證:為定值,并計算出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知橢圓,是橢圓的頂點,若橢圓的離心率,且過點.

(Ⅰ)求橢圓的方程;
(Ⅱ)作直線,使得,且與橢圓相交于兩點(異于橢圓的頂點),設(shè)直線和直線的傾斜角分別是,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的焦點F1(-,0)和F2,0),長軸長6。
(1)求橢圓C的標準方程。
(2)設(shè)直線交橢圓C于A、B兩點,求線段AB的中點坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)已知直線經(jīng)過橢圓的左頂點A和上頂點D,橢圓的右頂點為,點是橢圓上位于軸上方的動點,直線與直線分別交于兩點。

(I)求橢圓的方程;
(Ⅱ)求線段的長度的最小值;
(Ⅲ)當線段的長度最小時,在橢圓上是否存在這樣的點,使得的面積為?若存在,確定點的個數(shù),若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左頂點為,上頂點為,右焦點為.設(shè)線段的中點為,若,則該橢圓離心率的取值范圍為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓中,過焦點且垂直于長軸的直線被橢圓截得的線段長為,焦點到相應(yīng)準線的
距離也為,則該橢圓的離心率為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知P、Q是橢圓3x2+5y2=1上滿足∠POQ=900的兩個動點,則|OP|2+|OQ|2=(  )
A.8B.C.D.無法確定

查看答案和解析>>

同步練習冊答案