菱形ABCD的邊AB=5,對角線BD=6,沿BD折疊得四面體ABCD,已知該四面體積不小于8,求二面角A—BC—C的取值范圍。
科目:高中數(shù)學 來源: 題型:
已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145
(1)求數(shù)列{an}的通項公式bn;
(2)設(shè)數(shù)列{an}的通項an=loga(1+)(其中a>0且a≠1)記Sn是數(shù)列{an}的前n項和,試比較Sn與logabn+1的大小,并證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
曲線C:與軸的交點關(guān)于原點的對稱點稱為“望點”,以“望點”為圓心,凡是與曲線C有公共點的圓,皆稱之為“望圓”,則當a=1,b=1時,所有的“望圓”中,面積最小的“望圓”的面積為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖10-4所示,在正三棱錐A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分別交AB、BD、DC、CA于E、F、G、H。
(1)判定四邊形EFGH的形狀,并說明理由;
(2)設(shè)P是棱AD上的點,當AP為何值時,平面PBC⊥平面EFGH,請給出證明。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點M是線段BD上一個動點,試確定M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)向量a=(3,5,-4),b=(2,1,8),計算2a+3b,3a-2b,a·b以及a與b所成角的余弦值,并確定λ,μ應(yīng)滿足的條件,使λa+μb與z軸垂直.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com