【題目】已知函數(shù),.
(1)若,當(dāng)時(shí),解關(guān)于的不等式;
(2)證明:有且僅有2個(gè)零點(diǎn).
【答案】(1);(2)見(jiàn)解析
【解析】
(1)先由導(dǎo)數(shù)的知識(shí)判斷出在上單調(diào)遞增,再由不等式得,解之即可;(2)由(1)可知函數(shù)在上沒(méi)有零點(diǎn),
當(dāng)時(shí),令,則,易知,則在上單調(diào)遞增,再根據(jù)、得出,使得,得在上單調(diào)遞減,在上單調(diào)遞增,
然后由、、并結(jié)合函數(shù)的零點(diǎn)存在性定理可得在,上分別有一個(gè)零點(diǎn).
(1)當(dāng)時(shí),.
故在上單調(diào)遞增,∴不等式等價(jià)于解得.
故關(guān)于的不等式的解集為.
(2)證明:由(1)知函數(shù)在上單調(diào)遞增,且.
∴函數(shù)在上沒(méi)有零點(diǎn).
設(shè),,
當(dāng)時(shí),,,∴.∴在上單調(diào)遞增.
易知在上單調(diào)遞增,且,.
故,使得,所以在上單調(diào)遞減,在上單調(diào)遞增.
又因?yàn)?/span>,,.
所以在,上分別有一個(gè)零點(diǎn).
綜上所述:有且僅有2個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E為線段AB上一點(diǎn),且AE︰EB=7︰2,點(diǎn)F、G分別為線段PA、PD的中點(diǎn).
(1)求證:PE⊥平面ABCD;
(2)若平面EFG將四棱錐P-ABCD分成左右兩部分,求這兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(2x)+2sin()sin(x).
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)y=f(x)的對(duì)稱軸方程,并求函數(shù)f(x)在區(qū)間[,]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E為PD的中點(diǎn),點(diǎn)F在PC上,且.
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)設(shè)點(diǎn)G在PB上,且.判斷直線AG是否在平面AEF內(nèi),說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),是的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時(shí),求證;
(Ⅱ)是否存在正整數(shù),使得對(duì)一切恒成立?若存在,求出的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)100名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下列聯(lián)表:
(1)能否有的把握認(rèn)為是否愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)?請(qǐng)說(shuō)明理由.
(2)利用分層抽樣的方法從以上愛(ài)好該項(xiàng)運(yùn)動(dòng)的大學(xué)生中抽取6人組建“運(yùn)動(dòng)達(dá)人社”,現(xiàn)從“運(yùn)動(dòng)達(dá)人社”中選派2人參加某項(xiàng)校際挑戰(zhàn)賽,求選出的2人中恰有1名女大學(xué)生的概率.
男 | 女 | 總計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 15 | 25 | 40 |
總計(jì) | 55 | 45 | 100 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,F1(﹣2,0),F2(2,0)是橢圓C:的兩個(gè)焦點(diǎn),M是橢圓C上的一點(diǎn),當(dāng)MF1⊥F1F2時(shí),有|MF2|=3|MF1|.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(0,3)作直線l與軌跡C交于不同兩點(diǎn)A,B,使△OAB的面積為(其中O為坐標(biāo)原點(diǎn)),問(wèn)同樣的直線l共有幾條?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),有下列4個(gè)命題:①任取,都有恒成立;②,對(duì)于一切恒成立;③函數(shù)有3個(gè)零點(diǎn);④對(duì)任意,不等式恒成立.則其中所有真命題的序號(hào)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com