【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,ADCDADBC,PA=AD=CD=2,BC=3EPD的中點,點FPC上,且

(Ⅰ)求證:CD⊥平面PAD;

(Ⅱ)求二面角F–AE–P的余弦值;

(Ⅲ)設點GPB上,且.判斷直線AG是否在平面AEF內(nèi),說明理由.

【答案】()見解析;

() ;

()見解析.

【解析】

()由題意利用線面垂直的判定定理即可證得題中的結(jié)論;

()建立空間直角坐標系,結(jié)合兩個半平面的法向量即可求得二面角F-AE-P的余弦值;

()首先求得點G的坐標,然后結(jié)合平面的法向量和直線AG的方向向量可判斷直線是否在平面內(nèi).

()由于PA⊥平面ABCD,CD平面ABCD,則PACD,

由題意可知ADCD,且PAAD=A,

由線面垂直的判定定理可得CD⊥平面PAD.

()以點A為坐標原點,平面ABCD內(nèi)與AD垂直的直線為x軸,AD,AP方向為y軸,z軸建立如圖所示的空間直角坐標系

易知:,

可得點F的坐標為,

可得,

設平面AEF的法向量為:,則

據(jù)此可得平面AEF的一個法向量為:,

很明顯平面AEP的一個法向量為

,

二面角F-AE-P的平面角為銳角,故二面角F-AE-P的余弦值為.

()易知,由可得,

,

注意到平面AEF的一個法向量為:,

且點A在平面AEF內(nèi),故直線AG在平面AEF內(nèi).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,點,點、分別為橢圓的上頂點和左焦點,且.

1)求橢圓的方程;

2)若過定點的直線與橢圓交于,兩點(,之間)設直線的斜率,在軸上是否存在點,使得以為鄰邊的平行四邊形為菱形?如果存在,求出的取值范圍?如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,極坐標系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.

1)分別寫出的極坐標方程;

2)直線的參數(shù)方程為為參數(shù)),點的直角坐標為,若直線與曲線有兩個不同交點,求實數(shù)的取值范圍,并求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)關于的不等式的解集為,求的值;

(2)若函數(shù)的圖象與軸圍成圖形的面積不小于50,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司訂購了一批樹苗,為了檢測這批樹苗是否合格,從中隨機抽測株樹苗的高度,經(jīng)數(shù)據(jù)處理得到如圖1所示的頻率分布直方圖,其中最高的株樹苗的高度的莖葉圖如圖2所示,以這株樹苗的高度的頻率估計整批樹苗高度的概率.

1)求這批樹苗的高度于米的概率,并求圖的值;

2)若從這批樹苗中隨機選取株,記為高度在的樹苗數(shù)量,求的分布列和數(shù)學期望;

3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布,如果這批樹苗的高度近似于正態(tài)分布的概率分布,則認為這批樹苗是合格的,將順利被簽收,否則,公司將拒絕簽收.試問:該批樹苗是否被簽收?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,的中點.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(,為常數(shù),為自然對數(shù)的底數(shù)).

1)當時,討論函數(shù)在區(qū)間上極值點的個數(shù);

2)當時,對任意的都有成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設的交點為,當變化時, 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線的極坐標方程為, 為曲線上的動點,求點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“校”、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生之間取整數(shù)值的隨機數(shù),分別用,,代表“和”、“諧”、“!、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):

由此可以估計,恰好第三次就停止摸球的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案