【題目】已知函數(shù).
(1)關于的不等式的解集為,求的值;
(2)若函數(shù)的圖象與軸圍成圖形的面積不小于50,求的取值范圍.
【答案】(1) (2)
【解析】
(1)當時,求得不等式的解集為空集,當時,求得函數(shù)的單調(diào)性,根據(jù)不等式的解集為,列出方程組,即可求解;
(2)由(1)知,當時不合題意;當時,,當時,求得函數(shù)的圖象與軸的交點為和,得到關于面積的不等式,即可求解.
(1)當時,,則關于的不等式的解集為空集,不合題意,
當時,,
所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
因為關于的不等式的解集為,
所以,即,解得.
(2)設函數(shù)的圖象與軸圍成圖形面積為,
由(1)知,當時,,不合題意;
當時,,
當時,,
當時,函數(shù)的圖象與軸的交點為和,
此時函數(shù)的圖象與軸圍成圖形面積為,
化簡得,解得或(舍去),
所以實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)滿足:對任何,都有,且當時,.在下列結論:
(1)對任何,都有;(2)任意,都有;
(3)函數(shù)的值域是;
(4)“函數(shù)在區(qū)間上單調(diào)遞減”的充要條件是“存在,使得”.
其中正確命題是( )
A.(1)(2)B.(1)(2)(3)C.(1)(3)(4)D.(2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間及極值;
(2)設時,存在,使方程成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,均值與方差都不變;②將某校參加摸底測試的1200名學生編號為1,2,3,…,1200,從中抽取一個容量為50的樣本進行學習情況調(diào)查,按系統(tǒng)抽樣的方法分為50組,如果第一組中抽出的學生編號為20,則第四組中抽取的學生編號為92;③線性回歸方程必經(jīng)過點;④在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有的把握認為吸煙與患肺病有關系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺病.其中錯誤的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E為PD的中點,點F在PC上,且.
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)設點G在PB上,且.判斷直線AG是否在平面AEF內(nèi),說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù),).
(1)求曲線和直線的直角坐標方程;
(2)若直線與曲線交于,兩點,且,求以為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)的定義域是,對任意的,有.當時,.給出下列四個關于函數(shù)的命題:
①函數(shù)是奇函數(shù);
②函數(shù)是周期函數(shù);
③函數(shù)的全部零點為,;
④當算時,函數(shù)的圖象與函數(shù)的圖象有且只有4個公共點.
其中,真命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com