9.如圖,△ABC中的陰影部分是由曲線y=x2與直線x-y+2=0所圍成,向△ABC內(nèi)隨機投擲一點,則該點落在陰影部分的概率為( 。
A.$\frac{7}{32}$B.$\frac{9}{32}$C.$\frac{7}{16}$D.$\frac{9}{16}$

分析 首先分別計算三角形和陰影部分的面積,利用幾何概型的公式解答.

解答 解:由題意,△ABC中的面積為$\frac{1}{2}×4×4$=8,△ABC中的陰影部分面積為${∫}_{-1}^{2}(x+2-{x}^{2})dx$=($\frac{1}{2}{x}^{2}+2x-\frac{1}{3}{x}^{3}$)|${\;}_{-1}^{2}$=$\frac{9}{2}$,由幾何概型的概率公式得到$\frac{\frac{9}{2}}{8}=\frac{9}{16}$;
故選:D.

點評 本題考查了利用定積分計算曲邊梯形的面積以及幾何概型的概率求法;正確計算陰影部分的面積是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組對象,能構(gòu)成集合的是( 。
A.西安中學(xué)的年輕老師
B.北師大版高中數(shù)學(xué)必修一課本上所有的簡單題
C.全國所有美麗的城市
D.2016年西安市所有的高一學(xué)生

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=x+$\frac{1}{x}$.
(1)用定義證明f(x)在[1,+∞)上是增函數(shù);
(2)求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線過原點與曲線y=$\frac{1}{x+1}$相切于點P,那么P點的坐標為(-$\frac{1}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等差數(shù)列{an}中,$\frac{{a}_{1010}}{{a}_{1009}}$<-1,若它的前n項和Sn有最大值,則使Sn>0的最大正整數(shù)n的值為2018.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在二項式(2x-3y)9的展開式中,各項系數(shù)之和是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$\overline{z}$是z的共軛復(fù)數(shù),z+$\overline{z}$=2,(z-$\overline{z}$)•i=2,則z對應(yīng)的點位于復(fù)平面內(nèi)( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知平行四邊形ABCD的兩條對角線交于點M,點P是BD上任意一點,若|$\overrightarrow{AD}$|=2,|$\overrightarrow{AB}$|=1,且∠BAD=60°,則$\overrightarrow{AP}$•$\overrightarrow{CM}$的取值范圍是( 。
A.[1,$\frac{7}{4}$]B.[-$\frac{5}{2}$,-1]C.[0,$\sqrt{2}$]D.[-1,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax(ax-3a+1),其中a>0且a≠1,又f(1)=-6
(1)求實數(shù)a的值;
(2)若x∈[-1,3],求函數(shù)f(x)的值域.
(3)求函數(shù)f(x)零點.

查看答案和解析>>

同步練習(xí)冊答案