0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828">

【題目】為了調(diào)查生活規(guī)律與患胃病是否與有關(guān),某同學(xué)在當(dāng)?shù)仉S機(jī)調(diào)查了20030歲以上的人,并根據(jù)調(diào)查結(jié)果制成了不完整的列聯(lián)表如下:

不患胃病

患胃病

總計

生活有規(guī)律

60

40

生活無規(guī)律

60

100

總計

100

(1)補(bǔ)全列聯(lián)表中的數(shù)據(jù);

(2)用獨性檢驗的基本原理,說明生活無規(guī)律與患胃病有關(guān)時,出錯的概率不會超過多少?

參考公式和數(shù)表如下:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

/p>

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)列聯(lián)表見解析 (2)

【解析】

(1)由已知數(shù)據(jù)作出2×2列聯(lián)表即可.
2)由列聯(lián)表,結(jié)合計算公式,求得的值,由此判斷出兩個量之間的關(guān)系.

(1) 完善列聯(lián)表中的數(shù)據(jù)如下:

不患胃病

患胃病

總計

生活有規(guī)律

60

40

100

生活無規(guī)律

40

60

100

總計

100

100

200

(2)(1)中的列聯(lián)表可得: .

所以,的把握認(rèn)為生活無規(guī)律與患胃病有關(guān)故認(rèn)為生活無規(guī)律與患胃病有關(guān)時,出錯的概率不會超過

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.

(1)求實數(shù)a的值;

(2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科研人員在對人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡單隨機(jī)樣本數(shù)據(jù),如下表:

(年齡/歲)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根據(jù)上表的數(shù)據(jù)得到如下的散點圖.

(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點圖:

(i)求;

(i)計算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.

(2)若關(guān)于的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計年齡為50歲時人體的脂肪含量.

附:參考數(shù)據(jù):,,,,

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20175月,來自一帶一路沿線的20國青年評選出了中國的新四大發(fā)明:高鐵、掃碼支付、共享單車和網(wǎng)購.乘坐高鐵可以網(wǎng)絡(luò)購票,為了研究網(wǎng)絡(luò)購票人群的年齡分布情況,在531日重慶到成都高鐵9600名網(wǎng)絡(luò)購票的乘客中隨機(jī)抽取了120人進(jìn)行了統(tǒng)計并記錄,按年齡段將數(shù)據(jù)分成6組:,得到如圖所示的直方圖:

1)若從總體的9600名網(wǎng)絡(luò)購票乘客中隨機(jī)抽取一人,估計其年齡大于35歲的概率;

2)試估計總體中年齡在區(qū)間內(nèi)的人數(shù);

3)試通過直方圖,估計531日當(dāng)天網(wǎng)絡(luò)購票的9600名乘客年齡的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶計劃種植萵筍和西紅柿,種植面積不超過畝,投入資金不超過萬元,假設(shè)種植萵筍和西紅柿的產(chǎn)量、成本和售價如下表:

年產(chǎn)量/畝

年種植成本/畝

每噸售價

萵筍

5噸

1萬元

0.5萬元

西紅柿

4.5噸

0.5萬元

0.4萬元

那么,該農(nóng)戶一年種植總利潤(總利潤=總銷售收入-總種植成本)的最大值為____萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

1)命題,的否定形式是,;

2)已知,則;

3)已知回歸直線的斜率的估計值是2,樣本點的中心為,則回歸直線方程為;

4)對分類變量的隨機(jī)變量的觀測值來說,越小,判斷有關(guān)系的把握越大;

5)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變.

其中正確說法的個數(shù)為(

A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展業(yè)務(wù),某調(diào)研組對,兩個公司的產(chǎn)品需求量進(jìn)行調(diào)研,準(zhǔn)備從國內(nèi)個人口超過萬的超大城市和)個人口低于萬的小城市隨機(jī)抽取若干個進(jìn)行統(tǒng)計,若一次抽取個城市,全是小城市的概率為.

(1)求的值;

(2)若一次抽取個城市,則:①假設(shè)取出小城市的個數(shù)為,求的分布列和期望;

②若取出的個城市是同一類城市,求全為超大城市的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于 兩點,與軸交于點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線有一個相同的焦點,且該橢圓的離心率為

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:

(Ⅱ)求過點的直線與該橢圓交于A,B兩點,O為坐標(biāo)原點,若,求的面積.

查看答案和解析>>

同步練習(xí)冊答案