【題目】已知正整數(shù)數(shù)列滿足對任意的正整數(shù)均有,證明:存在無窮多個正整數(shù)對(),使得.
【答案】見解析
【解析】
用反證法.
假設所有滿足的正整數(shù)對()只有有限多個,
即存在正整數(shù)使得所有滿足要求的都小于.
下面用數(shù)學歸納法證明:對正整數(shù),
存在有限集和由2013個不小于的連續(xù)正整數(shù)組成的集合,
使得中至少有個元素可以被中的某些元素整除.
當時,集合,符合要求.
當時,假定集合、滿足要求.
對,令,
其中,中包含了2013個不小于的連續(xù)的正整數(shù).
事實上,它們也不小于中的最大元素.
又由于中至少有個元素能被中的某些元素整除,
因此,對,也能被中的某些元素整除.
由,且中的元素不小于,知存在某些,使得.
由中的元素不小于中的最大元素,知.
從而,由的定義,知中沒有元素能整除.
故中至少有個元素能被中的某些元素整除(中至少有個元素能被中的某些元素整除,能被其自身整除).
因此,令即可完成歸納證明.
令.于是,有2013元集中至少有2014個數(shù)能被中的某些元素整除,矛盾.
故對任意的正整數(shù),均存在及,使得.
因此,存在無窮多個正整數(shù)對(),使得.
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經濟實力的不斷提升,居民收入也在不斷增加.某家庭2019年全年的收入與2015年全年的收入相比增加了一倍,實現(xiàn)翻番.同時該家庭的消費結構隨之也發(fā)生了變化,現(xiàn)統(tǒng)計了該家庭這兩年不同品類的消費額占全年總收入的比例,得到了如下折線圖:
則下列結論中正確的是( )
A.該家庭2019年食品的消費額是2015年食品的消費額的一半
B.該家庭2019年休閑旅游的消費額是2015年休閑旅游的消費額的五倍
C.該家庭2019年教育醫(yī)療的消費額與2015年教育醫(yī)療的消費額相當
D.該家庭2019年生活用品的消費額是2015年生活用品的消費額的兩倍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知()的方格表中的每個元素都是絕對值不大于1的實數(shù),且方格表中所有元素之和等于0,試求最小的非負實數(shù),使得每個這樣的方格表中必有一行或一列,其元素之和的絕對值不大于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,軸上方的點在拋物線上,且,直線與拋物線交于,兩點(點,與不重合),設直線,的斜率分別為,.
(Ⅰ)求拋物線的方程;
(Ⅱ)當時,求證:直線恒過定點并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地,目前德國漢堡,美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出,某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運有關?
(3)已知在被調查的年齡大于50歲的支持者中有6名女性,其中2名是女教師.現(xiàn)從這6名女性中隨機抽取2名,求恰有1名女教師的概率.
附:,,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為[-1,5],部分對應值如下表,的導函數(shù)的圖象如圖所示,下列關于的命題正確的是( )
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
A.函數(shù)的極大值點為0,4;
B.函數(shù)在[0,2]上是減函數(shù);
C.如果當時,的最大值是2,那么的最大值為4;
D.函數(shù)的零點個數(shù)可能為0、1、2、3、4個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩隊進行籃球決賽,采取五場三勝制(當一隊贏得三場勝利時,該隊獲勝,比賽結束).根據(jù)前期比賽成績,甲隊的主客場安排依次為“主主客客主”.設甲隊主場取勝的概率為,客場取勝的概率為,且各場比賽結果相互獨立,則甲隊不超過場即獲勝的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com