【題目】已知)的方格表中的每個(gè)元素都是絕對(duì)值不大于1的實(shí)數(shù),且方格表中所有元素之和等于0,試求最小的非負(fù)實(shí)數(shù),使得每個(gè)這樣的方格表中必有一行或一列,其元素之和的絕對(duì)值不大于

【答案】

【解析】

首先,考慮方格表

該方格表中前行,前列中元素之和均等于

行,后列中的元素之和的絕對(duì)值均等于

因此,

另一方面,設(shè)一方格表滿足題設(shè)條件,且每行、每列之和的絕對(duì)值都大于

不妨設(shè)前行每行元素之和都大于

于是,前行的總和大于

子表的每列元素之和的絕對(duì)值都不大于,

故必有列每列元素之和為正,其所在的原方格表的列元素之和也是正的.

不妨設(shè)前列每列元素之和為正(從而大于).

再注意到左上角的方塊和右下角的方塊中元素之和的絕對(duì)值分別不大于,最后得到方格表元素之和大于

,矛盾.

綜上,所求最小的非負(fù)實(shí)數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C以點(diǎn)為圓心,且被直線截得的弦長為.

1)求圓C的標(biāo)準(zhǔn)方程;

2)若直線l經(jīng)過點(diǎn),且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知100條線段的長度集合,試求從這些線段中任取三條線段能夠構(gòu)成三角形的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過頂點(diǎn)在原點(diǎn)、對(duì)稱軸為軸的拋物線上的點(diǎn)作斜率分別為,的直線,分別交拋物線,兩點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;

2)若,證明:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求所有的由實(shí)數(shù)構(gòu)成的有限集合使得,,且對(duì)中的任意四個(gè)不同的元素、、都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正整數(shù)數(shù)列滿足對(duì)任意的正整數(shù)均有,證明存在無窮多個(gè)正整數(shù)對(duì)),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的非負(fù)半軸重合,若曲線極坐標(biāo)系方程為

,直線的參數(shù)方程為為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與直線的普通方程;

(2)設(shè)點(diǎn)直線與曲線交于兩點(diǎn), 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

平面直角坐標(biāo)系中,射線,曲線的參數(shù)方程為為參數(shù)),曲線的方程為;以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.

(Ⅰ)寫出射線的極坐標(biāo)方程以及曲線的普通方程;

(Ⅱ)已知射線交于,,與交于,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級(jí)的全體學(xué)生平均分成個(gè)小組,且每個(gè)小組均有名男生和多名女生.現(xiàn)從各個(gè)小組中隨機(jī)抽取一名同學(xué)參加社區(qū)服務(wù)活動(dòng),若抽取的名學(xué)生中至少有一名男生的概率為,則(

A.該班級(jí)共有名學(xué)生

B.第一小組的男生甲被抽去參加社區(qū)服務(wù)的概率為

C.抽取的名學(xué)生中男女生數(shù)量相同的概率是

D.設(shè)抽取的名學(xué)生中女生數(shù)量為,則

查看答案和解析>>

同步練習(xí)冊(cè)答案