【題目】輪船A從某港口O要將一些物品送到正航行的輪船B上,在輪船A出發(fā)時(shí),輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以15海里/時(shí)的航速沿正東方向勻速行駛,假設(shè)輪船A沿直線方向以v海里/時(shí)的航速勻速行駛,經(jīng)過t小時(shí)與輪船B相遇,

1)若使相遇時(shí)輪船A航距最短,則輪船A的航行速度的大小應(yīng)為多少?

2)假設(shè)輪船B的航行速度為30海里/時(shí),輪船A的最高航速只能達(dá)到30海里/時(shí),則輪船A以多大速度及沿什么航行方向行駛才能在最短時(shí)間內(nèi)與輪船B相遇,并說明理由.

【答案】(1) 海里/時(shí)(2) 航向?yàn)楸逼珫|30°,航速為30海里/時(shí)時(shí),輪船A能在最短時(shí)間內(nèi)與輪船B相遇,理由見解析

【解析】

1)設(shè)相遇時(shí)輪船A航行的距離為s海里,利用余弦定理可得,進(jìn)而求得距離的最小值,從而得到此時(shí)的航行速度;

2)先畫出示意圖,再利用余弦定理整理可得速度與時(shí)間的關(guān)系,根據(jù)速度的范圍解得時(shí)間的最值,則可判斷示意圖中三角形的性質(zhì),進(jìn)而得到方向即可

1)設(shè)相遇時(shí)輪船A航行的距離為s海里,則

∴當(dāng)時(shí),,此時(shí),

即輪船A海里/時(shí)的速度航行,相遇時(shí)輪船A航距最短

2)航向?yàn)楸逼珫|30°,航速為30海里/時(shí)時(shí),輪船A能在最短時(shí)間內(nèi)與輪船B相遇,

設(shè)輪船A與輪船BQ處相遇,如圖,

,即,

,,,解得,

時(shí),,

時(shí),t最小且為,

此時(shí)在△POQ,

∴航向?yàn)楸逼珫|30°,航速為30海里/時(shí)時(shí),輪船A能在最短時(shí)間內(nèi)與輪船B相遇

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知 為橢圓 的左焦點(diǎn),且橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ) 是否存在平行四邊形 ,同時(shí)滿足下列兩個(gè)條件:

①點(diǎn)在直線上;②點(diǎn) 在橢圓上且直線 的斜率等于1.如果存在,求出點(diǎn)坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品要了解年廣告費(fèi)(單位:萬元)對年利潤(單位:萬元)的影響,對近4年的年廣告費(fèi)和年利潤數(shù)據(jù)作了初步整理,得到下面的表格:

廣告費(fèi)

2

3

4

5

年利潤

26

39

49

54

(Ⅰ)用廣告費(fèi)作解釋變量,年利潤作預(yù)報(bào)變量,建立關(guān)于的回歸直線方程;

(Ⅱ)根據(jù)(Ⅰ)的結(jié)果預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)的年利潤.

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正六棱錐被過棱錐高的中點(diǎn)且平行于底的平面所截,得到正六棱臺和較小的棱錐.

1)求大棱錐、小棱錐、棱臺的側(cè)面積之比;

2)若大棱錐的側(cè)棱長為,小棱錐的底面邊長為,求截得的棱臺的側(cè)面積與全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)內(nèi)有極值,求實(shí)數(shù)的取值范圍;

(Ⅱ)在(Ⅰ)的條件下,對任意,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,集合A={x|-3x4}B={x|1≤x≤10}

1)求ABARB);

2)已知集合C={x|2a-1≤xa+1},若CA=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù),則過曲線上一點(diǎn)的切線方程為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐P-ABC,D,E,F(xiàn)分別是棱PA,PB,PC的中點(diǎn)求證平面DEF∥平面ABC.

查看答案和解析>>

同步練習(xí)冊答案