【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為常數(shù)且為參數(shù)).

1)求的直角坐標方程;

2)若相交于、兩點,以線段為一條邊作的內接矩形,當矩形的面積取最大值時,求的值.

【答案】(1) 曲線的直角坐標方程為:;直線的直角坐標方程為: (2)

【解析】

(1)曲線利用平方可消去參數(shù),直線可用代入法消去參數(shù),得到普通方程.
(2)利用均值不等式的方法可求出圓的內接矩形面積最大時為內接正方形,即,然后利用圓中的垂徑定理結合點到直線的距離可求得答案.

1)曲線的參數(shù)方程為為參數(shù)).

所以曲線的直角坐標方程為:.

直線的參數(shù)方程為為常數(shù)且,為參數(shù)).

所以直線的直角坐標方程為:.

(2)如圖,直線過定點.

. 因為的內接矩形.則為直徑,即

所以.

矩形對的面積為,.

,當且僅當時取等號.

的半徑,圓心到直線的距離為:

,解得:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,點是橢圓上的點,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,左右焦點分別為,,離心率為,右焦點到右頂點的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點,,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家統(tǒng)計局服務業(yè)調查中心和中國物流與采購聯(lián)合會發(fā)布的201810月份至20199月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結論中錯誤的是(

A.12個月的PMI值不低于50%的頻率為

B.12個月的PMI值的平均值低于50%

C.12個月的PMI值的眾數(shù)為49.4%

D.12個月的PMI值的中位數(shù)為50.3%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線圍成的各區(qū)域上分別且只能標記數(shù)字1,2,3,4,相鄰區(qū)域標記的數(shù)字不同,其中,區(qū)域和區(qū)域標記的數(shù)字丟失.若在圖上隨機取一點,則該點恰好取自標記為1的區(qū)域的概率所有可能值中,最大的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】角中,角A、B、C的對邊分別是a、b、c,若

1)求角A;

2)若的面積為,求的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求曲線在點的切線方程;

2)討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)f(x)的極值點的個數(shù);

2)若f(x)有兩個極值點證明.

查看答案和解析>>

同步練習冊答案