【題目】如圖,四棱錐中,側面底面, , , , , ,點在棱上,且,點在棱上,且平面.
(1)求證: 平面;
(2)求二面角的余弦值.
【答案】(1)詳見解析(2)
【解析】試題分析:連接交于點,根據(jù)三角形相識,可得, ,由勾股定理可得是直角三角形,進而得,再由面面垂直判定定理可得結論;(2)以, , 所在直線分別為軸, 軸, 軸建立空間直角坐標系,求出平面的法向量與平面的法向量,利用空間向量夾角余弦公式可得結果.
試題解析:(1)如圖連接交于點,因為平面,所以,由,所以,又,所以,
所以, ,
又因為,所以是直角三角形,
又,所以,
又因為側面底面,所以平面.
(2)因為, ,所以,有,如圖,以, , 所在直線分別為軸, 軸, 軸建立空間直角坐標系,
則, , ,
,所以,
所以 ,
設平面的法向量為,
則,
,令,則,所以,
又因為平面的法向量,
所以,
即所求二面角的余弦值是.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=9,an+1=an+2n+5;數(shù)列{bn}滿足b1= ,bn+1= bn(n≥1).
(1)求an , bn;
(2)記數(shù)列{ }的前n項和為Sn , 證明: ≤Sn< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中國詩詞大會》是中央電視臺最近推出的一檔有重大影響力的大型電視文化節(jié)目,今年兩會期間,教育部部長陳寶生答記者問時就給予其高度評價.基于這樣的背景,山東某中學積極響應,也舉行了一次詩詞競賽.組委會在競賽后,從中抽取了部分選手的成績(百分制),作為樣本進行統(tǒng)計,作出了圖1的頻率分布直方圖和圖2的莖葉圖(但中間三行污損,看不清數(shù)據(jù)).
(I)求樣本容量和頻率分布直方圖中的,的值;
(II)分數(shù)在[80,90)的學生中,男生有2人,現(xiàn)從該組抽取三人“座談”,寫出基本事件空間并求至少有兩名女生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線:,過焦點斜率大于零的直線交拋物線于、兩點,且與其準線交于點.
(Ⅰ)若線段的長為,求直線的方程;
(Ⅱ)在上是否存在點,使得對任意直線,直線,,的斜率始終成等差數(shù)列,若存在求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),( )
(1)當時,求函數(shù)在處的切線方程;
(2)若函數(shù)在區(qū)間上單調遞增,求的取值范圍;
(3)求函數(shù)在區(qū)間的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4;坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程.
(Ⅱ)求曲線上的點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 為實常數(shù).
(Ⅰ)設,當時,求函數(shù)的單調區(qū)間;
(Ⅱ)當時,直線、與函數(shù)、的圖象一共有四個不同的交點,且以此四點為頂點的四邊形恰為平行四邊形.
求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com