【題目】李先生的網(wǎng)店經(jīng)營堅果類食品,一年中各月份的收入、支出(單位:百元)情況的統(tǒng)計如圖所示,下列說法中錯誤的是(

A. 2至3月份的收入的變化率與11至12月份的收入的變化率相同

B. 支出最高值與支出最低值的比是

C. 第三季度平均收入為5000元

D. 利潤最高的月份是2月份

【答案】D

【解析】

通過圖表信息直接觀察,計算,找出答案即可.

解:A,23月份的收入的變化率為201112月份的變化率為20,故相同.A正確.

B,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值與支出最低值的比是61.故B正確.

C,第三季度的7,8,9月每個月的收入分別為40百元,50百元,60百元,故第三季度的平均收入為50百元,故C正確.

D,利潤最高的月份是3月份和10月份都是30百元,高于2月份的利潤是806020百元,故D錯誤.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對在直角坐標系的第一象限內(nèi)的任意兩點,作如下定義:,那么稱點是點的“上位點”,同時點是點的“下位點”.

1)試寫出點的一個“上位點”坐標和一個“下位點”坐標;

2)設(shè)、、均為正數(shù),且點是點的上位點,請判斷點是否既是點的“下位點”又是點的“上位點”,如果是請證明,如果不是請說明理由;

3)設(shè)正整數(shù)滿足以下條件:對任意實數(shù),總存在,使得點既是點的“下位點”,又是點的“上位點”,求正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的公差,項和為,且滿足,

1)試尋找一個等差數(shù)列和一個非負常數(shù),使得等式對于任意的正整數(shù)恒成立,并說明你的理由;

2)對于(1)中的等差數(shù)列和非負常數(shù),試求)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,已知,.

(1)求證:;

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3PA=BC=4,M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 相交于點,點在線段上,,且平面

(1)求實數(shù)的值;

(2)若,, 求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了解社區(qū)群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個行政區(qū)抽出6個社區(qū)進行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個社區(qū).

1)求從A,B,C三個行政區(qū)中分別抽取的社區(qū)個數(shù);

2)若從抽得的6個社區(qū)中隨機的抽取2個進行調(diào)查結(jié)果的對比,求抽取的2個社區(qū)中至少有一個來自A行政區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值,用樣本估計總體.

(1)將直徑小于等于或直徑大于的零件認為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個零件,計算其中次品個數(shù)的數(shù)學(xué)期望

(2)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應(yīng)事件的概率):①;②;③.評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C,過焦點F的直線l與拋物線C交于M,N兩點.

1)若直線l的傾斜角為,求的長;

2)設(shè)M在準線上的射影為A,求證:A,O,N三點共線(O為坐標原點).

查看答案和解析>>

同步練習(xí)冊答案