6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為A,右焦點為F(c,0),直線x=c與雙曲線C在第一象限的交點為P,過F的直線l與雙曲線C過二、四象限的漸近線平行,且與直線AP交于點B,若△ABF與△PBF的面積的比值為2,則雙曲線C的離心率為( 。
A.$\frac{5}{3}$B.$\frac{3\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

分析 求出B的坐標,利用過F的直線l與雙曲線C過二、四象限的漸近線平行,可得-$\frac{a}$=$\frac{\frac{2^{2}}{3a}}{\frac{2c-a}{3}-c}$,由此,即可得出結論.

解答 解:由題意P(c,$\frac{^{2}}{a}$),
∵△ABF與△PBF的面積的比值為2,∴AB:BP=2:1,
∵A(-a,0),∴B($\frac{2c-a}{3}$,$\frac{2^{2}}{3a}$),
∵過F的直線l與雙曲線C過二、四象限的漸近線平行,
∴-$\frac{a}$=$\frac{\frac{2^{2}}{3a}}{\frac{2c-a}{3}-c}$,
∴2b=a+c,
∴3e2-2e-5=0,
∵e>1,∴e=$\frac{5}{3}$,
故選A.

點評 本題考查雙曲線的方程與性質,考查斜率的計算,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若集合A={x|x2+3x-4>0},B={x|-2<x≤3},且M=A∩B,則有( 。
A.1∈MB.2∈MC.(∁RB)⊆AD.B⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,已知斜三棱柱ABC-A1B1C1的所有棱長均為2,∠B1BA=$\frac{π}{3}$,且側面ABB1A1⊥底面ABC.
(Ⅰ)證明:B1C⊥AC1
(Ⅱ)若M為A1C1的中點,求二面角A-B1M-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設變量x,y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x+y-3≤0}\\{x-2y+6≥0}\end{array}\right.$,則目標函數(shù)z=2x-y的最小值為-12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(x)=|2x-1|+x+$\frac{1}{2}$的最小值為m.
(1)求m的值;
(2)已知a,b,c是正實數(shù),且a+b+c=m,求證:2(a3+b3+c3)≥ab+bc+ca-3abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若向量$\overrightarrow{a}$,$\overrightarrow$滿足$|a|=2,|b|=\sqrt{3}$,且$\overrightarrow$⊥($\overrightarrow{a}$+$\overrightarrow$)則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)f(x)=3x-4x3,(x∈[0,1])的最大值是( 。
A.$\frac{1}{2}$B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)f(x)=sinx-cos(x+$\frac{π}{6}$),x∈[0,π]的值域是[-$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知向量$\vec a=({3,-2})$,$\vec b=({4,6})$,若向量$2\vec a+\vec b$與向量$\vec b$的夾角為θ,則cosθ=(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習冊答案