【題目】現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),由上下兩部分組成,上部的形狀是正四棱錐,下部的形狀是正四棱柱(如圖所示),并要求正四棱柱的高是正四棱錐的高的4倍.
(1)若,,則倉(cāng)庫(kù)的容積是多少?
(2)若正四棱錐的側(cè)棱長(zhǎng)為,當(dāng)為多少時(shí),下部的正四棱柱側(cè)面積最大,最大面積是多少?
【答案】(1)(2)當(dāng)為時(shí),下部分正四棱柱側(cè)面積最大,最大面積是.
【解析】
(1)直接利用棱錐和棱柱的體積公式求解即可;
(2)設(shè),下部分的側(cè)面積為,由已知正四棱柱的高是正四棱錐的高的4倍.可以求出的長(zhǎng),利用正四棱錐的側(cè)棱長(zhǎng),結(jié)合勾股定理,可以求出的長(zhǎng),由正方形的性質(zhì),可以求出的長(zhǎng),這樣可以求出的表達(dá)式,利用配方法,可以求出的最大值.
(1),則,
.
,
故倉(cāng)庫(kù)的容積為.
(2)設(shè),下部分的側(cè)面積為,
則,
,,
,
設(shè),
當(dāng)即時(shí),,
答:當(dāng)為時(shí),下部分正四棱柱側(cè)面積最大,最大面積是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線與軸,軸的交點(diǎn)分別為,圓以線段為直徑.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線過(guò)點(diǎn),與圓交于點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)M(m,2),其焦點(diǎn)為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)E為y軸上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)E作不經(jīng)過(guò)原點(diǎn)的兩條直線分別與拋物線C和圓F:(x﹣1)2+y2=1相切,切點(diǎn)分別為A,B,求證:直線AB過(guò)定點(diǎn)F(1,0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上是減函數(shù),求的最小值;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正四棱錐中, 分別是
的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列結(jié)論中不恒成立的是( 。
A. 與異面 B. ∥面
C. ⊥ D. ∥
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命題“若sinx=siny,則x=y”的逆否命題為真命題
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.命題“若△ABC為銳角三角形,則有sinA>cosB”是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為的學(xué)生成績(jī)樣本,得頻率分布表如下:
組號(hào) | 分組 | 頻率 | 頻數(shù) |
第一組 | |||
第二組 | ① | ||
第三組 | ② | ||
第四組 | |||
第五組 | |||
合計(jì) |
(1)寫(xiě)出表中①、②位置的數(shù)據(jù);
(2)估計(jì)成績(jī)不低于分的學(xué)生約占多少;
(3)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com