已知是定義在上的奇函數(shù). 當時,,則不等式的解集用區(qū)間表示為    
∵當時,,令,,∴,又是定義在上的奇函數(shù),∴,∴,即時,. 要,則
,解得,∴不等式的解集用區(qū)間為
.
【考點定位】分段函數(shù),函數(shù)的奇偶性,一元二次不等式的解法. 考查計算能力.中等題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其圖象為曲線,點為曲線上的動點,在點處作曲線的切線與曲線交于另一點,在點處作曲線的切線.
(Ⅰ)當時,求函數(shù)的單調區(qū)間;
(Ⅱ)當點時,的方程為,求實數(shù)的值;
(Ⅲ)設切線、的斜率分別為、,試問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù),證明:
(Ⅰ)對每個,存在唯一的,滿足
(Ⅱ)對任意,由(Ⅰ)中構成的數(shù)列滿足.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)處取最小值, 則=(  )
A.1+B.1+C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

“活水圍網(wǎng)”養(yǎng)魚技術具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當不超過4(尾/立方米)時,的值為(千克/年);當時,的一次函數(shù);當達到(尾/立方米)時,因缺氧等原因,的值為(千克/年).
(1)當時,求函數(shù)的表達式;
(2)當養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設[x]表示不大于x的最大整數(shù), 則對任意實數(shù)x, y, 有 (    )
A.[-x] = -[x]B.[2x] = 2[x]
C.[x+y]≤[x]+[y]D.[x-y]≤[x]-[y]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有下列命題中假命題的序號是                 
是函數(shù)的極值點;
②三次函數(shù)有極值點的充要條件是
③奇函數(shù)在區(qū)間上單調遞減.
④若雙曲線的漸近線方程為,則其離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的定義域是            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列各組函數(shù)中,表示同一函數(shù)的是(    )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案