精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,角AB,C的對邊分別為a,b,c,且

1)求角A的值;

2)若角B,BC邊上的中線AM,求邊b

【答案】1A.(2b2

【解析】

1)根據正弦定理,結合,逆用兩角和的正弦公式進行求解即可;

2)根據已知可以判斷出△ABC的形狀,最后利用余弦定理進行求解即可.

1)在△ABC中,∵,

∴(2bccosAacosC,

2sinBcosAsinAcosCsinCcosAsinA+CsinB

cosA

A

2)∵AB,

ab,CπBA,

BC邊上的中線AM,

∴在△ACM中,由余弦定理可得:AM2AC2+CM22ACCMcosC,即:7b2+2bcos,

∴整理解得:b2

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線過焦點且平行于軸的弦長為.,直線交于兩點,

1)求拋物線的方程;

2)若不平行于軸,且為坐標原點),證明:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)設曲線,點,為該曲線上不同的兩點.求證:當時,直線的斜率大于-1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,,分別是的中點。

1)求證:;

2)求平面與平面所成銳二面角的大;

3)線段上是否存在一個動點,使得直線與平面所成角為,若存在,求線段的長度,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,函數的圖象在點處的切線平行于軸.

(Ⅰ)求的值

(Ⅱ)設,若的所有零點中,僅有兩個大于,設為

1)求證:,

2)過點的直線的斜率為,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐PABCD中,底面是邊長為2的菱形,∠BAD60°PBPD2,PA,ACBDO

1)設平面ABP平面DCPl,證明:lAB

2)若EPA的中點,求三棱錐PBCE的體積VPBCE

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數某相鄰兩支圖象與坐標軸分別變于點,則方程所有解的和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C)的左右焦點分別為,點為短軸的一個端點,.

1)求橢圓C的方程;

2)如圖,過右焦點,且斜率為k)的直線l與橢圓C相交于D,E兩點,A為橢圓的右頂點,直線,分別交直線于點M,N,線段的中點為P,記直線的斜率為.試問是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案