分析 由條件利用余弦定理可得cosA=$\frac{1}{2}$,可得A=60°.再根據(jù)sinB•sinC=sin2A,可得bc=a2,即(b-c)2=0,即b=c,綜合可得結(jié)論.
解答 解:在△ABC中,∵(b+c+a)(b+c-a)=3bc,
∴化簡(jiǎn)可得:b2+c2-a2=bc,
∴由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∴A=60°.
再根據(jù)sinB•sinC=sin2A,可得bc=a2,
∴b2+c2=a2+bc=2bc,
即(b-c)2=0,
∴b=c.
綜上可得,△ABC為等邊三角形,
故答案為:等邊三角形.
點(diǎn)評(píng) 本題主要考查正弦定理和余弦定理的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10m | B. | 30m | C. | 10m | D. | 10m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com