已知函數(shù)處取得極值,求函數(shù)以及的極大值和極小值.
處取得極大值,在處取得極小值

試題分析:先求出導函數(shù),進而根據(jù)條件得出,列出方程組,從中解出的值,進而根據(jù)函數(shù)的極值與導數(shù)的關系求解出函數(shù)的極大值與極小值即可.
試題解析:因為,所以
因為函數(shù)處取得極值
所以

,
,得
變化時,的變化情況如下表:




1


+
0

0
+


極大值

極小值

 
處取得極大值,在處取得極小值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若是函數(shù)的極值點,求曲線在點處的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),求的取值范圍;
(3)設為正實數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)討論函數(shù)的單調(diào)性;
(Ⅱ)當時,求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對定義域每的任意恒成立,求實數(shù)的取值范圍;
(Ⅲ)證明:對于任意正整數(shù),不等式恒成立。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在[0,3]上的最大值和最小值分別是(      ).
A.5,-15B.5,-14C.5,-16D.5,15

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知x=-是函數(shù)f(x)=ln(x+1)-x+x2的一個極值點。
(1)求a的值;
(2)求曲線y=f(x)在點(1,f(1))處的切線方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為(  )
A.72B.36C.12D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=mx2+lnx-2x在定義域內(nèi)是增函數(shù),則實數(shù)m的取值范圍為________.

查看答案和解析>>

同步練習冊答案