(本小題滿分14分)已知定義在上的函數(shù)滿足,且對任意有.
(Ⅰ)判斷在上的奇偶性,并加以證明.
(Ⅱ)令,,求數(shù)列的通項公式.
(Ⅲ)設為的前項和,若對恒成立,求的最大值.
(Ⅰ)奇函數(shù)。見解析;(Ⅱ); (Ⅲ)的最大值為.
【解析】(1)先根據(jù)x,y取值的任意性,可令得, 然后再令x=0,可得
f(-y)=-f(y),從而可判定f(x)為奇函數(shù).
(II)滿足,則必有
,否則若則必有,依此類推必有,矛盾.據(jù)此可否定據(jù)此,
從而得到,
然后再根據(jù),可確定是等比數(shù)列, 問題到此基本得以解決.
(III)在(2)的基礎上,可知, 從而可采用錯位相減的方法求和.
(Ⅰ).對任意有…………①
令得;………………………………………………1分
令由①得,
用替換上式中的有………………………………………2分
在上為奇函數(shù).………………………………………………3分
(Ⅱ).滿足,則必有
否則若則必有,依此類推必有,矛盾
………………………………………………5分
,又
是為首項,為公比的等比數(shù)列,…………………………………7分
………………………………………………8分
(Ⅲ).………………………………………………9分
故……………………………………②
………………………③
②③得
………………………………………………11分
………………………………………………12分
若對恒成立須,解得……………………13分
的最大值為. ………………………………………………14分
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com