【題目】某研究性學(xué)習(xí)小組為了解學(xué)生每周用于體育鍛煉時(shí)間的情況,在甲、乙兩所學(xué)校隨機(jī)抽取了各50名學(xué)生,做問(wèn)卷調(diào)查,并作出如下頻率分布直方圖:

(1)根據(jù)直方圖計(jì)算:兩所學(xué)校被抽取到的學(xué)生每周用于體育鍛煉時(shí)間的平均數(shù);
(2)在這100名學(xué)生中,要從每周用于體育鍛煉時(shí)間不低于10小時(shí)的學(xué)生中選出3人,該3人中來(lái)自乙學(xué)校的學(xué)生數(shù)記為X,求X的分布列和數(shù)學(xué)期望.

【答案】
(1)解:由頻率分布直方圖得甲校被抽取到的學(xué)生每周用于體育鍛煉時(shí)間的平均數(shù)為:

=0.12×5.5+0.24×6.5+0.32×7.5+0.20×8.5+0.08×9.5+0.04×10.5=7.5.

乙校被抽取到的學(xué)生每周用于體育鍛煉時(shí)間的平均數(shù)為:

=0.08×5.5+0.24×6.5+0.28×7.5+0.24×8.5+0.08×9.5+0.08×10.5=7.74.


(2)解:每周體育鍛煉時(shí)間不低于10個(gè)小時(shí)的學(xué)生中,甲校有2人,乙校有4人,

X的所有可能取值有1,2,3,

P(X=1)= = ,

P(X=2)= =

P(X=3)= = ,

∴X的分布列為:

X

1

2

3

P

EX=


【解析】(1)由頻率分布直方圖能求出兩所學(xué)校被抽取到的學(xué)生每周用于體育鍛煉時(shí)間的平均數(shù).(2)每周體育鍛煉時(shí)間不低于10個(gè)小時(shí)的學(xué)生中,甲校有2人,乙校有4人,X的所有可能取值有1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.
【考點(diǎn)精析】掌握頻率分布直方圖和離散型隨機(jī)變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的值域?yàn)?/span>[0,+∞),求實(shí)數(shù)a的取值范圍;

(2)若關(guān)于x的不等式Fx)>afx)+12恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0125萬(wàn)元和05萬(wàn)元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大收益其最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的奇函數(shù)fx),當(dāng)x≥0時(shí),fx)=,則關(guān)于x的函數(shù)Fx)=fx)-a(0<a<1,a為常數(shù))的所有零點(diǎn)之和為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)中,直線的參數(shù)方程為為參數(shù)),P、Q分別為直線與x軸、y軸的交點(diǎn),線段PQ的中點(diǎn)為M.

)求直線的直角坐標(biāo)方程;

)以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo)和直線OM的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩直線,當(dāng)a在區(qū)間內(nèi)變化時(shí),求直線與兩坐標(biāo)軸圍成的四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲(chóng)農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲(chóng)的危害,但蔬菜上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水(單位:千克)清洗蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計(jì)表:

1

2

3

4

5

58

54

39

29

10

(1)在答題紙的坐標(biāo)系中,描出散點(diǎn)圖,并判斷變量是正相關(guān)還是負(fù)相關(guān);

(2)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程,令,計(jì)算平均值,完成以下表格(填在答題卡中),求出的回歸方程.(, 保留兩位有效數(shù)字):

1

4

9

16

25

58

54

39

29

10

(3)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時(shí)對(duì)人體無(wú)害,為了放心食用該蔬菜,請(qǐng)?jiān)u估需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))(附:對(duì)于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘法估計(jì)分別為: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家規(guī)定個(gè)人稿費(fèi)繳納方法為:不超過(guò)800元的不納稅,超過(guò)800元而不超過(guò)4000元的按超過(guò)800元部分的14%納稅,超過(guò)4000元的按全部稿酬的11.2%納稅(本題中稿費(fèi)均指納稅前稿費(fèi)).

(Ⅰ)某人出了一本書,獲得30000元的個(gè)人稿費(fèi),則這個(gè)人需要納稅是多少元?

(Ⅱ)試建立某人所得稿費(fèi)x元與納稅額y元的函數(shù)關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知梯形ABCD中,ADBC,ABC =BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EFBCAE = ,GBC的中點(diǎn)。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF

1)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;

2)當(dāng) 取得最大值時(shí),求二面角D-BF-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案