15.已知tanα=2,則$\frac{{2{{sin}^2}α+1}}{{cos2(α-\frac{π}{4})}}$的值是(  )
A.$\frac{5}{3}$B.$-\frac{13}{4}$C.$\frac{13}{5}$D.$\frac{13}{4}$

分析 利用同角三角函數(shù)基本關系式化簡所求,結(jié)合已知即可計算得解.

解答 解:∵tanα=2,
∴$\frac{{2{{sin}^2}α+1}}{{cos2({α-\frac{π}{4}})}}=\frac{{2{{sin}^2}α+{{sin}^2}α+{{cos}^2}α}}{{cos({2α-\frac{π}{2}})}}=\frac{{3{{sin}^2}α+{{cos}^2}α}}{sin2α}$=$\frac{{3{{tan}^2}α+1}}{2tanα}=\frac{{3×{2^2}+1}}{2×2}=\frac{13}{4}$,
故選:D.

點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知平面α∩平面β=直線l,點A,C∈α,點B,D∈β,且A,B,C,D∉l,點M,N分別是線段AB,CD的中點.( 。
A.當|CD|=2|AB|時,M,N不可能重合
B.M,N可能重合,但此時直線AC與l不可能相交
C.當直線AB,CD相交,且AC∥l時,BD可與l相交
D.當直線AB,CD異面時,MN可能與l平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤3\\ x+3y≥-k\\ y≤1\end{array}\right.$(k∈Z),且z=2x+y的最大值為6,則k的值為(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,一個多面體的正視圖和側(cè)視圖是兩個全等的等腰直角三角形且直角邊長為2,俯視圖是邊長為2的正方形,則該多面體的最大面的面積是( 。
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p:x2+x-2>0,命題q:{x|f(x)=lg(2x-3)},則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.定義在[1,e2]上的函數(shù)$f(x)=\frac{lnx}{x}$,則對任意的x∈[1,e2],使f(x)單調(diào)遞減的概率為$\frac{e}{e+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如果θ是第三象限的角,那么( 。
A.sinθ>0B.cosθ>0C.tanθ>0D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設全集U=R,集合A={x|x<0},B={x||x|>1},則A∩(∁UB)={x|-1≤x<0}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=x2-2x+3,則g(x)=f(2-x2)的單調(diào)增區(qū)間是( 。
A.[-1,0]及[1,+∞)B.[-$\sqrt{3}$,0]及[$\sqrt{3}$,+∞)C.(-∞,-1]及[0,1]D.(-∞,-$\sqrt{3}$]及[0,$\sqrt{3}$]

查看答案和解析>>

同步練習冊答案