20.設(shè)$α∈(\frac{π}{2},π)$,且$sinα(sinα+cosα)=\frac{21}{25}$,則tanα的值為-7.

分析 由已知利用同角三角函數(shù)基本關(guān)系式化簡(jiǎn)可求4tan2α+25tanα-21=0,結(jié)合α的范圍,即可計(jì)算得解.

解答 解:∵$sinα(sinα+cosα)=\frac{21}{25}$,
∴$\frac{si{n}^{2}α+sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{21}{25}$,即:$\frac{ta{n}^{2}α+tanα}{ta{n}^{2}α+1}$=$\frac{21}{25}$,
∴整理可得:4tan2α+25tanα-21=0,
∴解得:tanα=$\frac{3}{4}$,或-7,
∵$α∈(\frac{π}{2},π)$,
∴tanα<0,可得:tanα=-7.
故答案為:-7.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={-2,-1,0,1,2},B={x|x2+2x<0},則A∩B=( 。
A.{1,2}B.{-2,-1}C.{-1}D.{-2,-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,A,B,C的對(duì)邊分別為a,b,c,若2(a2+c2)-ac=2b2,則sinB=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{15}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列四個(gè)不等式中,錯(cuò)誤的個(gè)數(shù)是( 。
①50.5<60.5②0.10.3<0.10.4③log23<log25④log32<0.1-0.2
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=ex+e-x,若曲線y=f(x)的一條切線的斜率為$\frac{3}{2}$,則該切點(diǎn)的橫坐標(biāo)等于( 。
A.ln2B.2ln2C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有垣厚五尺,兩鼠對(duì)穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側(cè)面對(duì)面打洞,已知第一天兩鼠都打了一尺長(zhǎng)的洞,以后大鼠每天打的洞長(zhǎng)是前一天的2倍,小鼠每天打的洞長(zhǎng)是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時(shí)各打了幾尺長(zhǎng)的洞?設(shè)兩鼠x 天后相遇(假設(shè)兩鼠每天的速度是勻速的),則x=( 。
A.$2\frac{1}{18}$B.$2\frac{1}{17}$C.$2\frac{2}{17}$D.$2\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.πB.C.2π+4D.3π+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=cos(2x-$\frac{π}{6}$)(x∈R),下列命題正確的是( 。
A.若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z)B.f(x)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱
C.f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱D.f(x)在區(qū)間(-$\frac{π}{3}$,$\frac{π}{12}$)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x≤1}\\{lo{g}_{3}\frac{x}{3}lo{g}_{3}\frac{x}{9},x>1}\end{array}\right.$.
(1)求f(log2$\frac{3}{2}$)的值;
(2)求f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案