【題目】已知數列是公差不為0的等差數列, 且成等比數列.
(1)求數列{an}的通項公式;
(2)設,求數列的前n項和.
科目:高中數學 來源: 題型:
【題目】分別拋擲兩顆骰子各一次,觀察向上的點數,求:
(1)兩數之和為5的概率;
(2)以第一次向上的點數為橫坐標,第二次向上的點數為縱坐標的點在圓內部的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車的推廣給消費者帶來全新消費體驗,迅速贏得廣大消費者的青睞,然而,同時也暴露出管理、停放、服務等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調查小組隨機地對不同年齡段50人進行調查,將調查情況整理如下表:
并且,年齡在和的人中持“提倡”態(tài)度的人數分別為5和3,現(xiàn)從這兩個年齡段中隨機抽取2人征求意見.
(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.
【答案】(1);(2).
【解析】試題分析:(1)年齡在[20,25)中共有6人,其中持“提倡”態(tài)度的人數為5,其中抽兩人,基本事件總數n=15,被抽到的2人都持“提倡”態(tài)度包含的基本事件個數m=10,由此能求出年齡在[20,25)中被抽到的2人都持“提倡”態(tài)度的概率.(2)年齡在[40,45)中共有5人,其中持“提倡”態(tài)度的人數為3,其中抽兩人,基本事件總數n′=10,年齡在[40,45)中被抽到的2人至少1人持“提倡”態(tài)度包含的基本事件個數m′=9,由此能求出年齡在[40,45)中被抽到的2人至少1人持“提倡”態(tài)度的概率.
解析:
(1)設在中的6人持“提倡”態(tài)度的為, , , , ,持“不提倡”態(tài)度的為.
總的基本事件有(),(),(),(),(),(),(),(),(),(),(),(),(),(),().共15個,其中兩人都持“提倡”態(tài)度的有10個,
所以P==
(2)設在中的5人持“提倡”態(tài)度的為, , ,持“不提倡”態(tài)度的為, .
總的基本事件有(),(),(),(),(),(),(),(),(),(),共10個,其中兩人都持“不提倡”態(tài)度的只有()一種,所以P==
【題型】解答題
【結束】
22
【題目】以平面直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,已知圓的極坐標方程為,直線的參數方程為(為參數),若與交于兩點.
(Ⅰ)求圓的直角坐標方程;
(Ⅱ)設,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?
(2)現(xiàn)從所有抽取的30歲以上的網民中利用分層抽樣抽取5人,
求這5人中經常使用、偶爾或不用共享單車的人數;
從這5人中,在隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式: ,其中.
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數的圖象恒過(0,0)和(1,1)兩點,則稱函數為“0-1函數”.
(1)判斷下面兩個函數是否是“0-1函數”,并簡要說明理由:
①; ②.
(2)若函數是“0-1函數”,求;
(3)設 ,定義在R上的函數滿足:① 對 , R,均有;② 是“0-1函數”,求函數的解析式及實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知Sn為數列{an}的前n項和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求數列{an}的通項an;
(2)若bn= ,求數列{bn}的前n項和Tn;
(3)設ck= ,{ck}的前n項和為An , 是否存在最小正整數m,使得不等式An<m對任意正整數n恒成立?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com