【題目】已知m>1,直線l:x﹣my﹣ =0,橢圓C: +y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn). (Ⅰ)當(dāng)直線l過右焦點(diǎn)F2時,求直線l的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),△AF1F2 , △BF1F2的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.
【答案】解:(Ⅰ)解:因?yàn)橹本l:x﹣my﹣ =0,經(jīng)過F2( ,0), 所以 = ,得m2=2,
又因?yàn)閙>1,所以m= ,
故直線l的方程為x﹣ y﹣1=0.
(Ⅱ)解:設(shè)A(x1 , y1),B(x2 , y2).
由 ,消去x得
2y2+my+ ﹣1=0
則由△=m2﹣8( ﹣1)=﹣m2+8>0,知m2<8,
且有y1+y2=﹣ ,y1y2= ﹣ .
由于F1(﹣c,0),F(xiàn)2(c,0),故O為F1F2的中點(diǎn),
由 , =2 ,可知G( , ),H( , )
|GH|2= +
設(shè)M是GH的中點(diǎn),則M( , ),
由題意可知2|MO|<|GH|
即4[( )2+( )2]< + 即x1x2+y1y2<0
而x1x2+y1y2=(my1+ )(my2+ )+y1y2=(m2+1)( )
所以( )<0,即m2<4
又因?yàn)閙>1且△>0
所以1<m<2.
所以m的取值范圍是(1,2).
【解析】(1)把F2代入直線方程求得m,則直線的方程可得.(2)設(shè)A(x1 , y1),B(x2 , y2).直線與橢圓方程聯(lián)立消去x,根據(jù)判別式大于0求得m的范圍,且根據(jù)韋達(dá)定理表示出y1+y2和y1y2 , 根據(jù) , =2 ,可知G( , ),h( , ),表示出|GH|2 , 設(shè)M是GH的中點(diǎn),則可表示出M的坐標(biāo),進(jìn)而根據(jù)2|MO|<|GH|整理可得x1x2+y1y2<0把x1x2和y1y2的表達(dá)式代入求得m的范圍,最后綜合可得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為頂點(diǎn)的多面體中, 平面, 平面, .
(1)請?jiān)趫D中作出平面,使得,且,并說明理由;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有一批專業(yè)技術(shù)人員,對他們進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷 | 35歲以下 | 35~50歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(Ⅰ)用分層抽樣的方法在35~50歲年齡段的專業(yè)技術(shù)人員中抽取一個容量為10的樣本,將該樣本看成一個總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;
(Ⅱ)在這個公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為 ,求x、y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.
(1)求證:ACBC=ADAE;
(2)過點(diǎn)C作⊙O的切線交BA的延長線于點(diǎn)F,若AF=3,CF=9,求AC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時,良馬走了二十一日.
則以上說法錯誤的個數(shù)是( )個
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2﹣3x,則函數(shù)g(x)=f(x)﹣x+3的零點(diǎn)的集合為( )
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,試估計(jì)該校學(xué)生每周平均體育運(yùn)動時間超過4小時的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4小時.請完成每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)?
男生 | 女生 | 合計(jì) | |
每周平均體育運(yùn)動時間不超過4小時 | |||
每周平均體育運(yùn)動時間超過4小時 | |||
合計(jì) | 300 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com