【題目】已知拋物線(xiàn),過(guò)拋物線(xiàn)C的焦點(diǎn)F的直線(xiàn)l交拋物線(xiàn)CA,B兩點(diǎn),且A,B兩點(diǎn)在拋物線(xiàn)C的準(zhǔn)線(xiàn)上的投影分別P、Q

1)已知,若,求直線(xiàn)l的方程;

2)設(shè)P、Q的中點(diǎn)為M,請(qǐng)判斷PFMB的位置關(guān)系并說(shuō)明理由.

【答案】12.見(jiàn)解析

【解析】

1)將拋物線(xiàn)方程化為,求出焦點(diǎn),設(shè),,根據(jù)向量的坐標(biāo)運(yùn)算由可得,再根據(jù),,兩式相減求出直線(xiàn)的斜率,利用點(diǎn)斜式即可求解.

2)依題意求出拋物線(xiàn)C的準(zhǔn)線(xiàn)方程為:,設(shè)直線(xiàn)l的方程為:,將直線(xiàn)與拋物線(xiàn)聯(lián)立消y,由韋達(dá)定理可得,然后由一直求出,利用向量共線(xiàn)的坐標(biāo)表示即可求解.

解:(1)拋物線(xiàn),化為,

所以?huà)佄锞(xiàn)C的焦點(diǎn)

設(shè),

所以,,

,得,

,兩式相減得:

,

所以,

所以直線(xiàn)l的方程為:

2,理由如下:

依題意可知拋物線(xiàn)C的準(zhǔn)線(xiàn)方程為:,

依題意可設(shè)直線(xiàn)l的方程為:,

聯(lián)立y,

所以,,

,

所以,

,

因?yàn)?/span>

所以,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(diǎn)(

A.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來(lái)的,橫坐標(biāo)不變

B.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍橫坐標(biāo)不變

C.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來(lái)的,橫坐標(biāo)不變

D.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,橫坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位為了更好地應(yīng)對(duì)新型冠狀病毒肺炎疫情,對(duì)單位的職工進(jìn)行防疫知識(shí)培訓(xùn),所有職工選擇網(wǎng)絡(luò)在線(xiàn)培訓(xùn)和線(xiàn)下培訓(xùn)中的一種方案進(jìn)行培訓(xùn).隨機(jī)抽取了140人的培訓(xùn)成績(jī),統(tǒng)計(jì)發(fā)現(xiàn)樣本中40個(gè)成績(jī)來(lái)自線(xiàn)下培訓(xùn)職工,其余來(lái)自在線(xiàn)培訓(xùn)的職工,并得到如下統(tǒng)計(jì)圖表:

1)寫(xiě)出線(xiàn)下培訓(xùn)莖葉圖中成績(jī)的中位數(shù),估算在線(xiàn)培訓(xùn)直方圖的中位數(shù)(保留一位小數(shù));

2)得分90分及以上為成績(jī)優(yōu)秀,完成下邊列聯(lián)表,并判斷是否有的把握認(rèn)為成績(jī)優(yōu)秀與培訓(xùn)方式有關(guān)?

優(yōu)秀

非優(yōu)秀

合計(jì)

線(xiàn)下培訓(xùn)

在線(xiàn)培訓(xùn)

合計(jì)

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)改造一廢棄的流水線(xiàn)M,為評(píng)估流水線(xiàn)M的性能,連續(xù)兩天從流水線(xiàn)M生產(chǎn)零件上隨機(jī)各抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:記抽取的零件直徑為X.

第一天

直徑/mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

第二天

直徑/mm

58

60

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

2

4

5

21

34

21

3

3

2

1

1

1

100

經(jīng)計(jì)算,第一天樣本的平均值,標(biāo)準(zhǔn)差第二天樣本的平均值,標(biāo)準(zhǔn)差

1)現(xiàn)以?xún)商斐槿〉牧慵䜩?lái)評(píng)判流水線(xiàn)M的性能.

i)計(jì)算這兩天抽取200件樣本的平均值和標(biāo)準(zhǔn)差(精確到0.01);

ii)現(xiàn)以頻率值作為概率的估計(jì)值,根據(jù)以下不等式進(jìn)行評(píng)判(P表示相應(yīng)事件的概率),①;②;③評(píng)判規(guī)則為:若同時(shí)滿(mǎn)足上述三個(gè)不等式,則設(shè)備等級(jí)為優(yōu);僅滿(mǎn)足其中兩個(gè),則等級(jí)為良;若僅滿(mǎn)足其中一個(gè),則等級(jí)為合格;若全部不滿(mǎn)足,則等級(jí)為不合格,試判斷流水線(xiàn)M的性能等級(jí).

2)將直徑X范圍內(nèi)的零件認(rèn)定為一等品,在范圍以外的零件認(rèn)定為次品,其余認(rèn)定為合格品.現(xiàn)從200件樣本除一等品外的零件中抽取2個(gè),設(shè)為抽到次品的件數(shù),求分布列及其期望.

附注:參考數(shù)據(jù):,,;

參考公式:標(biāo)準(zhǔn)差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),a為常數(shù).

1)討論函數(shù)的單調(diào)性:

2)若函數(shù)有兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家規(guī)定每年的日以后的天為當(dāng)年的暑假.某鋼琴培訓(xùn)機(jī)構(gòu)對(duì)位鋼琴老師暑假一天的授課量進(jìn)行了統(tǒng)計(jì),如下表所示:

授課量(單位:小時(shí))

頻數(shù)

培訓(xùn)機(jī)構(gòu)專(zhuān)業(yè)人員統(tǒng)計(jì)近年該校每年暑假天的課時(shí)量情況如下表:

課時(shí)量(單位:天)

頻數(shù)

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

1)估計(jì)位鋼琴老師一日的授課量的平均數(shù);

2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當(dāng)?shù)厥谡n價(jià)為/小時(shí),每天的各類(lèi)生活成本為/天;若不授課,不計(jì)成本,請(qǐng)依據(jù)往年的統(tǒng)計(jì)數(shù)據(jù),估計(jì)一位鋼琴老師天暑假授課利潤(rùn)不少于萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的右焦點(diǎn),過(guò)點(diǎn)且與軸垂直的直線(xiàn)被橢圓截得的弦長(zhǎng)為

1)求橢圓的方程;

2)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 經(jīng)過(guò)橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線(xiàn),直線(xiàn)交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過(guò)全國(guó)人民的齊心協(xié)力,特別是全體一線(xiàn)醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙兩個(gè)地區(qū)采取防護(hù)措施后,統(tǒng)計(jì)了從27日到213日一周的新增“新冠肺炎”確診人數(shù),繪制成如圖折線(xiàn)圖:

1)根據(jù)圖中甲、乙兩個(gè)地區(qū)折線(xiàn)圖的信息,寫(xiě)出你認(rèn)為最重要的兩個(gè)統(tǒng)計(jì)結(jié)論;

2)新冠病毒在進(jìn)入人體后有一段時(shí)間的潛伏期,此期間為病毒傳播的最佳時(shí)期,我們把與病毒感染者有過(guò)密切接觸的人群稱(chēng)為密切接觸者,假設(shè)每位密切接觸者不再接觸其他病毒感染者,10天內(nèi)所有人不知情且生活照常.

i)在不加任何防護(hù)措施的前提下,假設(shè)每位密切接觸者被感染的概率均為.第一天,若某位感染者產(chǎn)生名密切接觸者則第二天新增感染者平均人數(shù)為ap;第二天,若每位感染者都產(chǎn)生a名密切接觸者,則第三天新增感染者平均人數(shù)為;以此類(lèi)推,記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為.寫(xiě)出,

ii)在(i)的條件下,若所有人都配戴口罩后,假設(shè)每位密切接觸者被感染的概率均為,且滿(mǎn)足關(guān)系,此時(shí),記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為.當(dāng)最大,且時(shí),根據(jù)的值說(shuō)明戴口罩的必要性.(精確到

參考公式:函數(shù)的導(dǎo)函數(shù);

參考數(shù)據(jù):,,

查看答案和解析>>

同步練習(xí)冊(cè)答案