【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;

(3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;

【答案】(1) 是“局部奇函數(shù)”,理由見解析;(2) ;(3)

【解析】試題分析:

(1)結(jié)合函數(shù)的解析式,當(dāng)時(shí), 成立,則是“局部奇函數(shù)”;

(2)由題意換元令結(jié)合對(duì)勾函數(shù)的性質(zhì)可得

(3)由定義得有解,結(jié)合函數(shù)的性質(zhì)分類討論:

故實(shí)數(shù)的取值范圍是

試題解析:

(1)由題意得:

當(dāng)時(shí), 成立, 是“局部奇函數(shù)”;

(2)由題意得:

有解,

設(shè)單調(diào)遞減,

單調(diào)遞增

(3)由定義得

有解,

設(shè)方程等價(jià)于時(shí)有解,

設(shè)對(duì)稱軸

此時(shí)

此時(shí)

綜上得: 即實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】班主任為了對(duì)本班學(xué)生的考試成績進(jìn)行分析,決定從全班位女同學(xué), 位男同學(xué)中隨機(jī)

抽取一個(gè)容量為的樣本進(jìn)行分析.

(Ⅰ)如果按性別比例分層抽樣,求樣本中男生、女生人數(shù)分別是多少;

(Ⅱ)隨機(jī)抽取位同學(xué),數(shù)學(xué)成績由低到高依次為: ;物理成績由低到高依次為: ,若規(guī)定分(含分)以上為優(yōu)秀,記為這位同學(xué)中數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教.

(1)4個(gè)人分到甲學(xué)校,2個(gè)人分到乙學(xué)校,1個(gè)人分到丙學(xué)校,有多少種不同的分配方案?

(2)一所學(xué)校去4個(gè)人,另一所學(xué)校去2個(gè)人,剩下的一個(gè)學(xué)校去1個(gè)人,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖1)和女生身高情況的頻率分布直方圖(圖2).已知圖1中身高在170~175cm的男生人數(shù)有16人.

(1)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分幾)的把握認(rèn)為“身高與性別有關(guān)”?

總計(jì)

男生身高

女神身高

總計(jì)

(2)在上述80名學(xué)生中,從身高在170-175cm之間的學(xué)生按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.

參考公式:

參考數(shù)據(jù):

0.025

0.610

0.005

0.001

5.024

4.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)若點(diǎn), 在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)若,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺(tái)中, 底面,四邊形為菱形, , .

(Ⅰ)若中點(diǎn),求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點(diǎn), , .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過,交直線于點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出的普通方程和的直角坐標(biāo)方程;

2)設(shè)點(diǎn)上,點(diǎn)上,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案