【題目】已知不過第二象限的直線l:ax﹣y﹣4=0與圓x2+(y﹣1)2=5相切.
(1)求直線l的方程;
(2)若直線l1過點(diǎn)(3,﹣1)且與直線l平行,直線l2與直線l1關(guān)于直線y=1對(duì)稱,求直線l2的方程.
【答案】
(1)解:∵直線l與圓x2+(y﹣1)2=5相切,∴ ,
∵直線l不過第二象限,∴a=2,
∴直線l的方程為2x﹣y﹣4=0
(2)解:∵直線l1過點(diǎn)(3,﹣1)且與直線l平行,
∴直線l1的方程為2x﹣y+b=0,
∵直線l1過點(diǎn)(3,﹣1),∴b=﹣7,
則直線l1的方程為2x﹣y﹣7=0,
∵直線l2與l1關(guān)于y=1對(duì)稱,∴直線l2的斜率為﹣2,且過點(diǎn)(4,1),
∴直線l2的斜率為y﹣1=﹣2(x﹣4),即化簡得2x+y﹣9=0
【解析】(1)利用直線l與圓x2+(y﹣1)2=5相切, ,結(jié)合直線l不過第二象限,求出a,即可求直線l的方程;(2)直線l1的方程為2x﹣y+b=0,直線l1過點(diǎn)(3,﹣1),求出b,即可求出直線l1的方程;利用直線l2與l1關(guān)于y=1對(duì)稱,求出直線的斜率,即可求直線l2的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有最值,寫出的取值范圍.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若存在,使得(是自然對(duì)數(shù)的底數(shù)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列各項(xiàng)均為正數(shù),其前項(xiàng)和為,且, .
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=lnx,g(x)= +mx+ (m<0),直線l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實(shí)數(shù)m的值;
(2)若h(x)=f(x+1)﹣g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;
(3)當(dāng)0<b<a時(shí),求證:f(a+b)﹣f(2a)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠ABC=90°,D是AC的中點(diǎn),⊙O經(jīng)過A,B,D三點(diǎn),CB的延長線交⊙O于點(diǎn)E,過點(diǎn)E作⊙O的切線,交AC的延長線于點(diǎn)F.在滿足上述條件的情況下,當(dāng)∠CAB的大小變化時(shí),圖形也隨著改變,但在這個(gè)變化過程中,有些線段總保持著相等的關(guān)系.
(1)連接圖中已標(biāo)明字母的某兩點(diǎn),得到一條新線段與線段CE相等,并說明理由;
(2)若CF=CD,求sin F的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( + )x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為常數(shù)),曲線在與軸的交點(diǎn) 處的切線斜率為.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若,且,試證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列式子中成立的是( )
A.log 4<log 6
B.( )0.3>( )0.3
C.( )3.4<( )3.5
D.log32>log23
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com