設(shè)f(x)是定義在[-1,1]上的偶函數(shù),g(x)與f(x)的圖象關(guān)于直線x-1=0對(duì)稱,且當(dāng)x∈[2,3]時(shí),g(x)=2a·(x-2)-4(a為常數(shù))
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)設(shè)a∈(6+∞),試判斷f(x)在[-1,1]上的單調(diào)性,并求使f(x)圖象的最高點(diǎn)落在直線y=12上時(shí)相應(yīng)的a值.
(1)設(shè)(x,f(x))是函數(shù)f(x)圖象上任一點(diǎn) ∵f(x)與g(x)的圖象關(guān)于直線x=1對(duì)稱,而點(diǎn)(x,f(x))關(guān)于x=1的對(duì)稱點(diǎn)為(2-x,f(x))∴點(diǎn)(2-x,f(x))在函數(shù)y=g(x)圖象上 ∴f(x)=g(2-x)…… 設(shè)x∈[-1,0] 2-x∈[2,3] 這時(shí)f(x)=g(2-x)=-2ax+ 又f(x)為偶函數(shù) ∴當(dāng)x∈[0,1]時(shí),f(x)=g(2-x)=2ax- 綜上得f(x)= (2)由于f(x)為偶函數(shù),先判斷函數(shù)f(x)在[0,1]上的單調(diào)性 設(shè)0≤<≤1 則f()-f()=…=()[2a-4(++)] ∵0<<3 且a>6 ∴2a-4()>0 而,∴f()<f()即f(x)在[0,1]上單調(diào)遞增 ∴f(x)在[-1,0]上單調(diào)遞減 又∵f(x)在[0,1]上的最大值為f(1)=2a-4依題意有2a-4=12 得a=8 ∴當(dāng)a>6時(shí),a=8使f(x)圖象上最高點(diǎn)落在y=12上 或:∵當(dāng)x∈[0,1]時(shí),f(x)=2ax-4∴(x)=2a-又0≤≤1,a>6 ∴(x)>0∴(x)在[0,1]上單調(diào)遞增,以下同上 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
①y=3-f(x) ②y=1+ ③y=[f(x)]2 ④y=1-
A.1 B
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)當(dāng)x∈(1,3]時(shí),f(x)的表達(dá)式;
(2)f(-3)及f(3.5)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.a(chǎn)<-1或a> B.-l<a<
C.a(chǎn)< D.a(chǎn)<且a≠-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年大綱版高三上學(xué)期單元測(cè)試(6)數(shù)學(xué)試卷 題型:解答題
設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對(duì)任意的實(shí)數(shù)a,b∈[-1,1],當(dāng)a+b
≠0時(shí),都有>0.
(1)若a>b,試比較f(a)與f(b)的大小;
(2)解不等式f(x-)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個(gè)函數(shù)的定義域的交集是空集,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省2010年高考預(yù)測(cè)試題數(shù)學(xué) 題型:解答題
設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.對(duì)任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.
(I)證明:對(duì)任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:
(II)對(duì)給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r:
(III)選取∈(O,1),,由(I)可確定含峰區(qū)間為或,在所得的含峰區(qū)間內(nèi)選取,由與或與類似地可確定一個(gè)新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0. 34(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com