【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線(xiàn)上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

(1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率);

;

評(píng)判規(guī)則為:若同時(shí)滿(mǎn)足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿(mǎn)足其中兩個(gè),則等級(jí)為乙;若僅滿(mǎn)足其中一個(gè),則等級(jí)為丙;若全部不滿(mǎn)足,則等級(jí)為丁,試判斷設(shè)備的性能等級(jí).

(2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.

①?gòu)脑O(shè)備的生產(chǎn)流水線(xiàn)上隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望;

②從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望.

【答案】(I)丙;(II)(;(

【解析】試題分析:(1)運(yùn)用相關(guān)系數(shù)進(jìn)行判別推理;(2)運(yùn)用貝努力分布的幾何分布求解期望.

試題解析:

1

因?yàn)樵O(shè)備的數(shù)據(jù)僅滿(mǎn)足一個(gè)不等式,故其性能等級(jí)為丙;

2)易知樣本中次品共6件,可估計(jì)設(shè)備生產(chǎn)零件的次品率為0.06.

)由題意可知,于是,

)由題意可知的分布列為

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年5月13日第30屆大連國(guó)際馬拉松賽舉行,某單位的10名跑友報(bào)名參加了半程馬拉松、10公里健身跑、迷你馬拉松3個(gè)項(xiàng)目(每人只報(bào)一項(xiàng)),報(bào)名情況如下:

項(xiàng)目

半程馬拉松

10公里健身跑

迷你馬拉松

人數(shù)

2

3

5

(其中:半程馬拉松公里,迷你馬拉松公里)

(1)從10人中選出2人,求選出的兩人賽程距離之差大于10公里的概率;

(2)從10人中選出2人,設(shè)為選出的兩人賽程距離之和,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,底面△ABC是等邊三角形,側(cè)面為正方形,且平面ABC 為線(xiàn)段上的一點(diǎn).

(Ⅰ) 若∥平面A1CD,確定D的位置,并說(shuō)明理由;

(Ⅱ) 在(Ⅰ)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的定義域?yàn)榧螦,y=﹣x2+2x+2a的值域?yàn)锽.
(1)若a=2,求A∩B
(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃面向高一年級(jí)名學(xué)生開(kāi)設(shè)校本選修課程,為確保工作的順利實(shí)施,先按性別進(jìn)行分層抽樣,抽取了名學(xué)生對(duì)社會(huì)科學(xué)類(lèi),自然科學(xué)類(lèi)這兩大類(lèi)校本選修課程進(jìn)行選課意向調(diào)查,其中男生有人.在這名學(xué)生中選擇社會(huì)科學(xué)類(lèi)的男生、女生均為人.

(Ⅰ)分別計(jì)算抽取的樣本中男生及女生選擇社會(huì)科學(xué)類(lèi)的頻率,并以統(tǒng)計(jì)的頻率作為概率,估計(jì)實(shí)際選課中選擇社會(huì)科學(xué)類(lèi)學(xué)生數(shù);

(Ⅱ)根據(jù)抽取的名學(xué)生的調(diào)查結(jié)果,完成下列列聯(lián)表.并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為科類(lèi)的選擇與性別有關(guān)?

選擇自然科學(xué)類(lèi)

選擇社會(huì)科學(xué)類(lèi)

合計(jì)

男生

女生

合計(jì)

附: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是正方形, 底面, , 分別是的中點(diǎn).

(1)在圖中畫(huà)出過(guò)點(diǎn)的平面,使得平面(須說(shuō)明畫(huà)法,并給予證明);

(2)若過(guò)點(diǎn)的平面平面且截四棱錐所得截面的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+x2+mx在x=1處有極小值,

g(x)=f(x)﹣x3x2+x﹣alnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)是否存在實(shí)數(shù)a,對(duì)任意的x1、x2∈(0,+∞),且x1≠x2,有恒成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|(x+2)(x﹣5)>0},B={x|m≤x<m+1},且BRA),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)f(x)= 的定義域?yàn)閇﹣a﹣2,b]
(1)求實(shí)數(shù)a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義給出證明;
(3)若實(shí)數(shù)m滿(mǎn)足f(m﹣1)<f(1﹣2m),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案