【題目】已知集合A={x|(x+2)(x﹣5)>0},B={x|m≤x<m+1},且B(RA),則實(shí)數(shù)m的取值范圍是 .
【答案】﹣2≤m≤4
【解析】解:集合A={x|(x+2)(x﹣5)>0}={x|x<﹣2或x>5},∴RA={x|﹣2≤x≤5},
∵集合B={x|m≤x<m+1},且B(RA),
∴ ,
解得﹣2≤m≤4,
∴實(shí)數(shù)m的取值范圍是﹣2≤m≤4.
所以答案是:﹣2≤m≤4.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用交、并、補(bǔ)集的混合運(yùn)算,掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱平面, , , , ,點(diǎn)是的中點(diǎn)
(1)證明: 平面;
(2)在線段上找一點(diǎn),使得直線與所成角的為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:
直徑/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率);
①;
②;
③
評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁,試判斷設(shè)備的性能等級(jí).
(2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.
①?gòu)脑O(shè)備的生產(chǎn)流水線上隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望;
②從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義在[﹣2,2]上的奇函數(shù)f(x)=x5+x3+b
(1)求b值;
(2)若f(x)在[0,2]上單調(diào)遞增,且f(m)+f(m﹣1)>0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】五邊形是由一個(gè)梯形與一個(gè)矩形組成的,如圖甲所示,B為AC的中點(diǎn), . 先沿著虛線將五邊形折成直二面角,如圖乙所示.
(Ⅰ)求證:平面平面;
(Ⅱ)求圖乙中的多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形,其中,,,等邊所在平面與平面垂直.
(Ⅰ)點(diǎn)在棱上,且,為的重心,求證:平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且的圖象與直線的兩個(gè)相鄰公共點(diǎn)之間的距離為.
(1)求函數(shù)的解析式,并求出的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象上所有點(diǎn)向左平移個(gè)單位,得到函數(shù)的圖象,設(shè), , 為的三個(gè)內(nèi)角,若,且向量, ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, ,動(dòng)點(diǎn)滿足.設(shè)動(dòng)點(diǎn)的軌跡為.
(1)求動(dòng)點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)求動(dòng)點(diǎn)與定點(diǎn)連線的斜率的最小值;
(3)設(shè)直線交軌跡于兩點(diǎn),是否存在以線段為直徑的圓經(jīng)過(guò)?若存在,求出實(shí)數(shù)的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng),時(shí),討論函數(shù)的單調(diào)性;
(2)對(duì)于任意,不等式恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com