已知直線L:x-y+3=0與橢圓
x2
16
+
y2
4
=1相交于A、B兩點(diǎn),求弦AB的長(zhǎng)以及中點(diǎn)P的坐標(biāo).
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)P(x0,y0).聯(lián)立
x-y+3=0
x2
16
+
y2
4
=1
,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式、弦長(zhǎng)公式即可得出.
解答: 解:設(shè)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)P(x0,y0).
聯(lián)立
x-y+3=0
x2
16
+
y2
4
=1
,化為5x2+24x+20=0.
∴x1+x2=-
24
5
,x1x2=4.
x0=
x1+x2
2
=-
12
5
,y0=x0+3=
3
5

∴P(-
12
5
,
3
5
)

|AB|=
2[(x1+x2)2-4x1x2]
=
2[(-
24
5
)2-4×4]
=
4
22
5
點(diǎn)評(píng):本題考查了直線與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式、弦長(zhǎng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,山腳下有一小塔AB,在塔底B測(cè)得山頂C的仰角為60°,在山頂C測(cè)得塔頂A的俯角為45°,已知塔高AB=20m,求山高CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直三棱柱BCE-ADG,底面△ADF中,AD⊥DF,DA=DF=DC,其中M,N分別是AB,AC的中點(diǎn),G是DF上的一個(gè)動(dòng)點(diǎn).
(1)求證:GN⊥AC;
(2)當(dāng)DC=
1
3
DF時(shí),在邊AD上是否存在一點(diǎn),使得GP∥平面FMC?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠ACB為鈍角,AB=2,BC=
2
,A=
π
6
.D為AC延長(zhǎng)線上一點(diǎn),且CD=
3
+1.
(Ⅰ)求∠BCD的大小;
(Ⅱ)求BD的長(zhǎng)及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-a)lnx,a∈R.若a=0,對(duì)于任意的x∈(0,1).
(1)求證:-
1
e
≤f(x)<2.
(2)若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率等于
1
3
,其焦點(diǎn)分別為A、B,C為橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),則在△ABC中,
sinA+sinB
sinC
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)邊長(zhǎng)為10的大正方體的表面涂成紅色后,再切成邊長(zhǎng)為1的小正方形,這些小正方形中至少有一面涂成紅色的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a<-
2
,則關(guān)于x的函數(shù)f(x)=(sinx+a)(cosx+a)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形PDCB中,DC∥PB,PB=3DC=3,PD=
2
,DA⊥PB,垂足為A,將△PAD沿AD折起到點(diǎn)P′,使得P′A⊥AB,得到四棱錐P′-ABCD,點(diǎn)M在棱P′B上.
(Ⅰ)證明:平面P′AD⊥平面P′CD;
(Ⅱ)平面AMC把四棱錐P′-ABCD分成兩個(gè)幾何體,當(dāng)P′D∥平面AMC時(shí),求這兩個(gè)幾何體的體積之比
VPM-ACD
VM-ABC
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案