【題目】第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.

(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?

(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】(1)8;(2)見解析.

【解析】

試題(1)利用分布計(jì)數(shù)乘法原理解答即可;(2)的所有可能取值是1,3,5,分別求出各隨機(jī)變量的概率,從而可得分布列,由期望公式可得結(jié)果.

試題解析:(1)依題意甲,乙,丙三人的分配方法有2種,其余二人的分配方法有種,故共有種不同的分配方案.

(2)設(shè)5名學(xué)生中恰有名被分到王城公園的事件為,的所有可能取值是1,3,5.

,

,

則隨機(jī)變量的分布列為

1

3

5

故隨機(jī)變量的數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了增強(qiáng)民眾防控病毒的意識(shí),舉行了“預(yù)防新冠病毒知識(shí)競(jìng)賽”網(wǎng)上答題,隨機(jī)抽取人,答題成績(jī)統(tǒng)計(jì)如圖所示.

1)由直方圖可認(rèn)為答題者的成績(jī)服從正態(tài)分布,其中,分別為答題者的平均成績(jī)和成績(jī)的方差,那么這名答題者成績(jī)超過分的人數(shù)估計(jì)有多少人?(同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值作代表)

2)如果成績(jī)超過分的民眾我們認(rèn)為是“防御知識(shí)合格者”,用這名答題者的成績(jī)來估計(jì)全市的民眾,現(xiàn)從全市中隨機(jī)抽取人,“防御知識(shí)合格者”的人數(shù)為,求.(精確到

附:①;②,則,;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某品牌飲料的某種食品添加劑是否超標(biāo),現(xiàn)對(duì)該品牌下的兩種飲料一種是碳酸飲料含二氧化碳,另一種是果汁飲料不含二氧化碳進(jìn)行檢測(cè),現(xiàn)隨機(jī)抽取了碳酸飲料、果汁飲料各10均是組成的一個(gè)樣本,進(jìn)行了檢測(cè),得到了如下莖葉圖根據(jù)國家食品安全規(guī)定當(dāng)該種添加劑的指標(biāo)大于毫克為偏高,反之即為正常.

1)依據(jù)上述樣本數(shù)據(jù),完成下列列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為食品添加劑是否偏高與是否含二氧化碳有關(guān)系?

正常

偏高

合計(jì)

碳酸飲料

果汁飲料

合計(jì)

2)現(xiàn)從食品添加劑偏高的樣本中隨機(jī)抽取2瓶飲料去做其它檢測(cè),求這兩種飲料都被抽到的概率.

參考公式:,其中

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

甲公司

乙公司

職位

A

B

C

D

職位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

(1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說明理由;

(2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場(chǎng)人士,就選擇這兩家公司的意愿做了統(tǒng)計(jì),得到以下數(shù)據(jù)分布:

選擇意愿

人員結(jié)構(gòu)

40歲以上(含40歲)男性

40歲以上(含40歲)女性

40歲以下男性

40歲以下女性

選擇甲公司

110

120

140

80

選擇乙公司

150

90

200

110

若分析選擇意愿與年齡這兩個(gè)分類變量,計(jì)算得到的K2的觀測(cè)值為k15.5513,測(cè)得出選擇意愿與年齡有關(guān)系的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.

1)求平面與平面所成銳二面角的余弦值;

2)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線所成的角最小時(shí),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,四邊形是邊長(zhǎng)為的正方形,平面⊥平面, .

(Ⅰ) 求證:;

(Ⅱ) 求證:平面⊥平面

(Ⅲ) 在線段上是否存在點(diǎn),使得⊥平面? 說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,,四本不同的書分給三位同學(xué),每人至少分到一本,每本書都必須有人分到,不能同時(shí)分給同一個(gè)人,則不同的分配方式共有__________種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處有極值

1)求的解析式;

2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)(1,-2)的直線被圓x2y22x2y10截得的弦長(zhǎng)為,則直線的斜率為________

查看答案和解析>>

同步練習(xí)冊(cè)答案