已知數(shù)列滿足).
(1)若數(shù)列是等差數(shù)列,求它的首項(xiàng)和公差;
(2)證明:數(shù)列不可能是等比數(shù)列;
(3)若,),試求實(shí)數(shù)的值,使得數(shù)列為等比數(shù)列;并求此時(shí)數(shù)列的通項(xiàng)公式.

(1)首項(xiàng)為,公差為,(2)詳見(jiàn)解析,(3),.

解析試題分析:(1)求特殊數(shù)列(等差數(shù)列或等比數(shù)列)通項(xiàng)的基本方法就是待定系數(shù)法.本題中只需確定公差與首項(xiàng),即只需列出兩個(gè)獨(dú)立條件就可解出. 由已知,若是等差數(shù)列,則,即,得,, 故.所以,數(shù)列的首項(xiàng)為,公差為.(2)證明數(shù)列不可能是等比數(shù)列,宜從反面出發(fā)推出矛盾即可. 假設(shè)數(shù)列是等比數(shù)列,則有,解得,從而,,又,,,不成等比數(shù)列,與假設(shè)矛盾,(3)本題也可同(1)一樣用待定系數(shù)法解,即需列出三個(gè)獨(dú)立條件,解出參數(shù)但運(yùn)算量較大,故考慮用方程恒等,系數(shù)對(duì)應(yīng)相等方法求解. 由化簡(jiǎn)得,所以, 再由數(shù)列通項(xiàng)可得.
試題解析:解(1)由已知,
是等差數(shù)列,則,即,
,, 故
所以,數(shù)列的首項(xiàng)為,公差為. (5分)
(2)假設(shè)數(shù)列是等比數(shù)列,則有
,
解得,從而,

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/d/srrz92.png" style="vertical-align:middle;" />,,,不成等比數(shù)列,與假設(shè)矛盾,
所以數(shù)列不是等比數(shù)列.     (10分)
(3)由題意,對(duì)任意,有為定值且),


于是,,
所以,
所以,當(dāng)時(shí),數(shù)列為等比數(shù)列.
此數(shù)列的首項(xiàng)為,公比為,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,向量.
(1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
(2)設(shè),若對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定正整數(shù),若項(xiàng)數(shù)為的數(shù)列滿足:對(duì)任意的,均有(其中),則稱數(shù)列為“Γ數(shù)列”.
(1)判斷數(shù)列是否是“Γ數(shù)列”,并說(shuō)明理由;
(2)若為“Γ數(shù)列”,求證:對(duì)恒成立;
(3)設(shè)是公差為的無(wú)窮項(xiàng)等差數(shù)列,若對(duì)任意的正整數(shù)
均構(gòu)成“Γ數(shù)列”,求的公差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù), 數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)一切成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{ }、{ }滿足:.
(1)求          
(2)證明:數(shù)列{}為等差數(shù)列,并求數(shù)列和{ }的通項(xiàng)公式;
(3)設(shè),求實(shí)數(shù)為何值時(shí) 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是各項(xiàng)為不同的正數(shù)的等差數(shù)列,成等差數(shù)列,又
(1)證明:為等比數(shù)列;
(2)如果數(shù)列前3項(xiàng)的和為,求數(shù)列的首項(xiàng)和公差;
(3)在(2)小題的前題下,令為數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是首項(xiàng)為a,公差為d的等差數(shù)列,是其前n項(xiàng)的和。記,其中c為實(shí)數(shù)。
(1)若,且成等比數(shù)列,證明:;
(2)若是等差數(shù)列,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,
(1)證明:數(shù)列是等差數(shù)列,并求;
(2)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,且對(duì)任意的成等比數(shù)列,其公比為,
(1)若;
(2)若對(duì)任意的成等差數(shù)列,其公差為
①求證:成等差數(shù)列,并指出其公差;
②若,試求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案