【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知cosA= ,b=5c.
(1)求sinC;
(2)若△ABC的面積S= sinBsinC,求a的值.
【答案】
(1)解:在△ABC中,∵a2=b2+c2﹣2bccosA=26c2﹣10c2× =18c2,
∴a=3 c,
∵cosA= ,
∵,0<A<π,
∴sinA= ,
∵ = ,
∴sinC= = =
(2)解:∵b=5c,
∴ = =5,
∴sinB=5sinC,
∴S= sinBsiS=nC= sin2C= ,
∵S= bcsinA= c2= ,
∴ = ,
∴a=
【解析】(1)利用余弦定理可求的a=3,進(jìn)而根據(jù)cosA求得sinA,利用正弦定理即可求得sinC.(2)根據(jù)b和c的關(guān)系,進(jìn)而求得sinB和sinC的關(guān)系,把sinC代入面積公式求得三角形的面積,進(jìn)而利用三角形面積公式求得 bcsinA=S,求得a
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , , ,點(diǎn)在上,且.
(Ⅰ)已知點(diǎn)在上,且,求證:平面平面;
(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線與平面所成的角為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體中,四邊形是菱形, 是邊長(zhǎng)為2的正三角形, , .
(1)證明: ;
(2)若在平面內(nèi)的正投影為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=1,an+an+1=( )n , Sn=a1+4a2+42a3+…+4n﹣1an , 類比課本中推導(dǎo)等比數(shù)列前項(xiàng)和公式的方法,可求得5Sn﹣4nan= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市2017年3月1日至16日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染.
(1)若該人隨機(jī)選擇3月1日至3月14日中的某一天到達(dá)該市,到達(dá)后停留天(到達(dá)當(dāng)日算天),求此人停留期間空氣重度污染的天數(shù)為天的概率;
(2)若該人隨機(jī)選擇3月7日至3月12日中的天到達(dá)該市,求這天中空氣質(zhì)量恰有天是重度污染的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再?gòu)腂勻速步行到C.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為130m/min,山路AC長(zhǎng)為1260m,經(jīng)測(cè)量,cosA= ,cosC=
(1)求索道AB的長(zhǎng);
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時(shí)間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3sin(2x+ )的圖象為C,關(guān)于函數(shù)f(x)及其圖象的判斷如下: ①圖象C關(guān)于點(diǎn)( ,0)對(duì)稱;
②圖象C關(guān)于直線x= 對(duì)稱;
③由圖象C向右平移 個(gè)單位長(zhǎng)度可以得到y(tǒng)=3sin2x的圖象;
④函數(shù)f(x)在區(qū)間(﹣ , )內(nèi)是減函數(shù);
⑤函數(shù)|f(x)+1|的最小正周期為 .
其中正確的結(jié)論序號(hào)是 . (把你認(rèn)為正確的結(jié)論序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓經(jīng)過不同的三點(diǎn)在第三象限),線段的中點(diǎn)在直線上.
(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)是橢圓上的動(dòng)點(diǎn)(異于點(diǎn)且直線分別交直線于兩點(diǎn),問是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中, 在線段上運(yùn)動(dòng)且不與, 重合,給出下列結(jié)論:
①;
②平面;
③二面角的大小隨點(diǎn)的運(yùn)動(dòng)而變化;
④三棱錐在平面上的投影的面積與在平面上的投影的面積之比隨點(diǎn)的運(yùn)動(dòng)而變化;
其中正確的是( )
A. ①③④ B. ①③
C. ①②④ D. ①②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com