【題目】已知向量, ,且滿足.
(1)求點(diǎn)的軌跡方程所代表的曲線;
(2)若點(diǎn), , 是曲線上的動(dòng)點(diǎn),點(diǎn)在直線上,且滿足, ,當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程.
【答案】(1) 所代表的曲線為以為圓心,2為半徑的圓;(2) 點(diǎn)的軌跡方程為.
【解析】試題分析:(1)由, ,可得, ,再由可得;(2)由, 可得是的中垂線,連接,則,∴ ,根據(jù)雙曲線的定義,點(diǎn)的軌跡是以為焦點(diǎn),實(shí)軸長為的雙曲線,從而可得點(diǎn)的軌跡方程.
試題解析:(1),
∴.
即
即為所求的點(diǎn)的軌跡方程.
所代表的曲線為以為圓心,2為半徑的圓
(2)因?yàn)榍是以為圓心,2半徑的圓.∴即為圓的圓心
又, ∴,點(diǎn)是的中點(diǎn),
即是的中垂線,
連接,則,∴
又,根據(jù)雙曲線的定義,點(diǎn)的軌跡是以為焦點(diǎn),
實(shí)軸長為2的雙曲線,
由,因此點(diǎn)的軌跡方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C: ,點(diǎn)在x軸的正半軸上,過點(diǎn)M的直線與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若,且直線的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線繞點(diǎn)M如何轉(zhuǎn)動(dòng), 恒為定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左焦點(diǎn)為,點(diǎn)為雙曲線右支上的一點(diǎn),且與圓相切于點(diǎn)為線段的中點(diǎn), 為坐標(biāo)原點(diǎn),則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:對(duì)任意,不等式恒成立;命題q:存在,使得成立.
(1)若p為真命題,求m的取值范圍;
(2)當(dāng),若p且q為假,p或q為真,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位N名員工參加“社區(qū)低碳你我他”活動(dòng),他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計(jì)的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。
區(qū)間 | |||||
人數(shù) | a | b |
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1 人在第3組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),平面上四個(gè)點(diǎn), , , 中有兩個(gè)點(diǎn)在橢圓上,另外兩個(gè)點(diǎn)在拋物線上.
(1)求的標(biāo)準(zhǔn)方程;
(2)是否存在直線滿足以下條件:①過的焦點(diǎn);②與交于兩點(diǎn),且以為直徑的圓經(jīng)過原點(diǎn).若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是( )
A. 至少有一個(gè)白球;至少有一個(gè)紅球 B. 至少有一個(gè)白球;紅、黑球各一個(gè)
C. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球 D. 至少有一個(gè)白球;都是白球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱臺(tái)ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)證明:CC1∥平面A1BD;
(Ⅱ)求直線CC1與平面ADD1A1所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)從某校高一年級(jí)隨機(jī)抽取名學(xué)生,獲得了他們?nèi)掌骄邥r(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
(Ⅰ)求的值.
(Ⅱ)若,補(bǔ)全表中數(shù)據(jù),并繪制頻率分布直方圖.
(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計(jì)該校高一學(xué)生的日平均睡眠時(shí)間不少于小時(shí)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com