【題目】設(shè)函數(shù)圖象上不同兩點(diǎn),處的切線的斜率分別是,,規(guī)定(為線段的長(zhǎng)度)叫做曲線在點(diǎn)與點(diǎn)之間的“彎曲度”,給出以下命題:
①函數(shù)圖象上兩點(diǎn)與的橫坐標(biāo)分別為和,則;
②存在這樣的函數(shù),其圖象上任意不同兩點(diǎn)之間的“彎曲度”為常數(shù);
③設(shè),是拋物線上不同的兩點(diǎn),則 ;
④設(shè), 是曲線(是自然對(duì)數(shù)的底數(shù))上不同的兩點(diǎn),則.
其中真命題的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
由新定義,利用導(dǎo)數(shù)求出函數(shù)y=sinx、y=x2在點(diǎn)A與點(diǎn)B之間的“彎曲度”判斷①、③正確;舉例說(shuō)明②是正確的;求出曲線y=ex上不同兩點(diǎn)A(x1,y1),B(x2,y2)之間的“彎曲度”,判斷④錯(cuò)誤.
對(duì)于①,由y=sinx,得y′=cosx,
則kA=cos1,kB=cos(﹣1)=cos1,則|kA﹣kB|=0,即φ(A,B)=0,①正確;
對(duì)于②,如y=1時(shí),y′=0,則φ(A,B)=0,②正確;
對(duì)于③,拋物線y=x2的導(dǎo)數(shù)為y′=2x,yA=xA2,yB=xB2,
∴yA﹣yB=xA2﹣xB2=(xA﹣xB)(xA+xB),
則φ(A,B)2,③正確;
對(duì)于④,由y=ex,得y′=ex,φ(A,B),
由不同兩點(diǎn)A(x1,y1),B(x2,y2),可得φ(A,B)1,∴④錯(cuò)誤;
綜上所述,正確的命題序號(hào)是①②③.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一勞動(dòng)節(jié)放假,某商場(chǎng)進(jìn)行一次大型抽獎(jiǎng)活動(dòng).在一個(gè)抽獎(jiǎng)盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個(gè),分別對(duì)應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個(gè)小球,按3個(gè)小球中最大得分的8倍計(jì)分,計(jì)分在20分到35分之間即為中獎(jiǎng).每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球中最大得分,求:
(1)取出的3個(gè)小球顏色互不相同的概率;
(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;
(3)求某人抽獎(jiǎng)一次,中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工企業(yè)2018年年底投入100萬(wàn)元,購(gòu)入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬(wàn)元)
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)大于1的自然數(shù),除了1和它本身外,不能被其他自然數(shù)整除,則稱這個(gè)數(shù)為質(zhì)數(shù).質(zhì)數(shù)的個(gè)數(shù)是無(wú)窮的.設(shè)由所有質(zhì)數(shù)組成的無(wú)窮遞增數(shù)列的前項(xiàng)和為,等差數(shù)列1,3,5,7,…中所有不大于的項(xiàng)的和為.
(Ⅰ)求和;
(Ⅱ)判斷和的大小,不用證明;
(Ⅲ)設(shè),求證:,,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,為其右焦點(diǎn),若,設(shè),且,則該橢圓的離心率的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com