設(shè)雙曲線與橢圓
x2
27
+
y2
36
=1
有共同的焦點(diǎn),且與橢圓相交,在第一象限的交點(diǎn)A的縱坐標(biāo)為4,求此雙曲線的方程.
分析:橢圓
x2
27
+
y2
36
=1
,故有焦點(diǎn)為F1(0,-3),F(xiàn)2(0,3),由此設(shè)出雙曲線的方程,再由雙曲線與橢圓的一個(gè)交點(diǎn)的縱坐標(biāo)為4,求出此點(diǎn)的橫坐標(biāo),將此點(diǎn)的坐標(biāo)代入方程,求出參數(shù)即得雙曲線方程即可
解答:解:設(shè)雙曲線方程為
y2
a2
-
x2
b2
=1(a>0,b>0)
,
由已知橢圓的兩個(gè)焦點(diǎn)F1(0,-3),F(xiàn)2(0,3),
又雙曲線與橢圓交點(diǎn)A的縱坐標(biāo)為4,∴A(
15
,4)
42
a2
-
(
15
)
2
b2
=1
a2+b2=9
,
解得
a2=4
b2=5

故雙曲線方程為
y2
4
-
x2
5
=1
點(diǎn)評:本題考查圓錐曲線的共同特征,解題的關(guān)鍵是兩者共同的特征設(shè)出雙曲線的標(biāo)準(zhǔn)方程,解題時(shí)要善于抓住問題的關(guān)鍵點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)結(jié)論其中正確的是(  )
①若實(shí)數(shù)x,y滿足(x-2)2+y2=3,則
y
x
的最大值為
3
;②橢圓
x2
4
+
y2
3
=1
與橢圓
x2
2
+
2y2
3
=1
有相同的離心率;③雙曲線
x2
2-k
+
y2
3-k
=1
的焦點(diǎn)坐標(biāo)是(1,0),(-1,0)④圓x2+y2=1與直線y=kx+2沒有 公共點(diǎn)的充要條件是k∈(-
3
3
)
⑤設(shè)a>1,則雙曲線
x2
a2
-
y2
(a+1)2
=1
的離心率e的取值范圍是(
2
,
5
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)設(shè)中心在原點(diǎn)的雙曲線與橢圓
x22
+y2=1有公共的焦點(diǎn),且它們的離心率互為倒數(shù),則該雙曲線的方程是
2x2-2y2=1
2x2-2y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①已知直線a,b和平面α,若a∥b,b∥α,則a∥α;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R)與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直;
⑤過M(2,0)的直線l與橢圓
x2
2
+y2=1交于P1P2兩點(diǎn),線段P1P2中點(diǎn)為P,設(shè)直線l斜率為k1(k≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中,正確命題的序號為
④⑤
④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列五個(gè)命題:
①已知直線a,b和平面α,若ab,bα,則aα;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R)與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直;
⑤過M(2,0)的直線l與橢圓
x2
2
+y2=1交于P1P2兩點(diǎn),線段P1P2中點(diǎn)為P,設(shè)直線l斜率為k1(k≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中,正確命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:填空題

設(shè)中心在原點(diǎn)的雙曲線與橢圓
x2
2
+y2=1有公共的焦點(diǎn),且它們的離心率互為倒數(shù),則該雙曲線的方程是______.

查看答案和解析>>

同步練習(xí)冊答案