【題目】如圖所示,在四面體中,,平面平面,,且.

(1)證明:平面;

(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.

【答案】(1)見(jiàn)證明;(2)

【解析】

1)根據(jù)面面垂直的性質(zhì)得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面

2)設(shè),利用椎體的體積公式求得 ,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得時(shí),四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.

(1)證明:因?yàn)?/span>,平面平面,

平面平面,平面

所以平面,

因?yàn)?/span>平面,所以.

因?yàn)?/span>,所以,

所以,

因?yàn)?/span>,所以平面.

(2)解:設(shè),則,

四面體的體積 .

,

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),四面體的體積取得最大值.

為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,

,,,.

設(shè)平面的法向量為,

,即

,得

同理可得平面的一個(gè)法向量為,

.

由圖可知,二面角為銳角,故二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如上圖所示,在正方體中, 分別是棱的中點(diǎn), 的頂點(diǎn)在棱與棱上運(yùn)動(dòng),有以下四個(gè)命題:

A.平面 ; B.平面⊥平面;

C 在底面上的射影圖形的面積為定值;

D 在側(cè)面上的射影圖形是三角形.其中正確命題的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)在拋物線的準(zhǔn)線上,且橢圓的短軸長(zhǎng)為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線的斜率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若三角形的面積等于四邊形的面積,求的值;

(Ⅲ)設(shè)點(diǎn)的中點(diǎn),射線為原點(diǎn))與橢圓交于點(diǎn),滿(mǎn)足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,為等邊三角形, ,點(diǎn)為邊的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四面體中,,平面平面,,且.

(1)證明:平面;

(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,現(xiàn)計(jì)劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,

(1)若綠化區(qū)域的面積為1,求道路的長(zhǎng)度;

(2)若綠化區(qū)域改造成本為10萬(wàn)元/,新建道路成本為10萬(wàn)元/.設(shè)),當(dāng)為何值時(shí),該計(jì)劃所需總費(fèi)用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在平行于軸的直線上,且軸的交點(diǎn)為,動(dòng)點(diǎn)滿(mǎn)足平行于軸,且.

1)求出點(diǎn)的軌跡方程.

2)設(shè)點(diǎn),,求的最小值,并寫(xiě)出此時(shí)點(diǎn)的坐標(biāo).

3)過(guò)點(diǎn)的直線與點(diǎn)的軌跡交于.兩點(diǎn),求證.兩點(diǎn)的橫坐標(biāo)乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)處取得極值,不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),證明不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案