【題目】一個(gè)暗箱中有形狀和大小完全相同的3只白球與2只黑球,每次從中取出一只球,取到白球得2分,取到黑球得3分.甲從暗箱中有放回地依次取出3只球.

1)求甲三次都取得白球的概率;

2)求甲總得分ξ的分布列和數(shù)學(xué)期望.

【答案】(1);(2)

【解析】

1)本題為有放回的取球問題,可看作獨(dú)立重復(fù)試驗(yàn),求出概率即可;

2ξ的所有可能取值為6,7,8,分別求其概率即可,利用期望公式求解即可.

1)由題意得,甲每次都取得白球的概率為,所以甲三次都取得白球的概率為;

2)甲總得分情況有6,7,8,9四種可能,記ξ為甲總得分.

,

,

ξ

6

7

8

9

Pxξ

27/125

54/125

36/125

8/125

甲總得分ξ的期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為等邊三角形,

(1)若點(diǎn)分別是線段的中點(diǎn),求證:平面平面;

(2)若二面角為直二面角,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿意度”與“餐飲滿意度”都分為五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為,餐飲滿意度為

(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);

(2)求“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的方差;

(3)為提高對(duì)酒店的滿意度,現(xiàn)從的會(huì)員中隨機(jī)抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:

(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表);

(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差

(i)若某用戶從該企業(yè)購買了10件這種產(chǎn)品,記表示這10件產(chǎn)品中質(zhì)量指標(biāo)值位于(187.4,225.2)的產(chǎn)品件數(shù),求

(ii)一天內(nèi)抽取的產(chǎn)品中,若出現(xiàn)了質(zhì)量指標(biāo)值在之外的產(chǎn)品,就認(rèn)為這一天的生產(chǎn)過程中可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查下。下面的莖葉圖是檢驗(yàn)員在一天內(nèi)抽取的15個(gè)產(chǎn)品的質(zhì)量指標(biāo)值,根據(jù)近似值判斷是否需要對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查。

附:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)離心率為,其短軸長為2.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)如圖,A為橢圓C的左頂點(diǎn),P,Q為橢圓C上兩動(dòng)點(diǎn),直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為k1,k2,且k1k2(λ,μ為非零實(shí)數(shù)),求λ22的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從年高考開始,高考物理、化學(xué)等六門選考科目的考生原始成績從高到低劃分為八個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為.選考科目成績計(jì)入考生總成績時(shí),將等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績.

某校級(jí)學(xué)生共人,以期末考試成績?yōu)樵汲煽冝D(zhuǎn)換了本校的等級(jí)成績,為學(xué)生合理選科提供依據(jù),其中物理成績獲得等級(jí)的學(xué)生原始成績統(tǒng)計(jì)如下

成績

93

91

90

88

87

86

85

84

83

82

人數(shù)

1

1

4

2

4

3

3

3

2

7

(1)求物理獲得等級(jí)的學(xué)生等級(jí)成績的平均分(四舍五入取整數(shù));

(2)從物理原始成績不小于分的學(xué)生中任取名同學(xué),求名同學(xué)等級(jí)成績不相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從年高考開始,高考物理、化學(xué)等六門選考科目的考生原始成績從高到低劃分為八個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為.選考科目成績計(jì)入考生總成績時(shí),將等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則分別轉(zhuǎn)換到八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績.

某校級(jí)學(xué)生共人,以期末考試成績?yōu)樵汲煽冝D(zhuǎn)換了本校的等級(jí)成績,為學(xué)生合理選科提供依據(jù),其中物理成績獲得等級(jí)的學(xué)生原始成績統(tǒng)計(jì)如下

成績

93

91

90

88

87

86

85

84

83

82

人數(shù)

1

1

4

2

4

3

3

3

2

7

(1)從物理成績獲得等級(jí)的學(xué)生中任取名,求恰好有名同學(xué)的等級(jí)分?jǐn)?shù)不小于的概率;

(2)待到本級(jí)學(xué)生高考結(jié)束后,從全省考生中不放回的隨機(jī)抽取學(xué)生,直到抽到名同學(xué)的物理高考成績等級(jí)為結(jié)束(最多抽取人),設(shè)抽取的學(xué)生個(gè)數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望(注: ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眾所周知的太極圖,其形狀如對(duì)稱的陰陽兩魚互抱在一起,因而也被稱為陰陽魚太極圖”.如圖是放在平面直角坐標(biāo)系中的太極圖,整個(gè)圖形是一個(gè)圓形,其中黑色陰影區(qū)域在軸右側(cè)部分的邊界為一個(gè)半圓.給出以下命題:①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是;②當(dāng)時(shí),直線與黑色陰影部分有公共點(diǎn);③當(dāng)時(shí),直線與黑色陰影部分有兩個(gè)公共點(diǎn).其中所有正確結(jié)論的序號(hào)是(

A.B.①②C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定義為兩點(diǎn)AB的“切比雪夫距離”,又設(shè)點(diǎn)P上任意一點(diǎn)Q,的最小值為點(diǎn)P到直線的“切比雪夫距離”,記作,給出下列三個(gè)命題:

①對(duì)任意三點(diǎn)AB、C,都有

②已知點(diǎn)P(2,1)和直線,

③定點(diǎn)動(dòng)點(diǎn)P滿足則點(diǎn)P的軌跡與直線(為常數(shù))有且僅有2個(gè)公共點(diǎn).

其中真命題的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案